10.甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.
(1)甲抽到选择题,乙抽到判断题的概率是多少?
(2)甲、乙二人中至少有一人抽到选择题的概率是多少?
分析:(1)是等可能性事件,求基本事件总数和A包含的基本事件数即可.(2)分类或间接法,先求出对立事件的概率.
解:(1)基本事件总数甲、乙依次抽一题有CC种,事件A包含的基本事件数为CC,故甲抽到选择题,乙抽到判断题的概率为=.
(2)A包含的基本事件总数分三类:
甲抽到选择题,乙抽到判断题有CC;
甲抽到选择题,乙也抽到选择题有CC;
甲抽到判断题,乙抽到选择题有CC.
共CC+CC+CC. 基本事件总数CC,
∴甲、乙二人中至少有一人抽到选择题的概率为:
=或P()
==,P(A)=1-P()=.
[探索题]某人有5把钥匙,一把是房门钥匙,但忘记了开房门的是哪一把.于是,他逐把不重复地试开,问:
(1)恰好第三次打开房门锁的概率是多少?
(2)三次内打开的概率是多少?
(3)如果5把内有2把房门钥匙,那么三次内打开的概率是多少?
解:5把钥匙,逐把试开有A种等可能的结果.
(1)第三次打开房门,须把能开房门的钥匙放在第三位,结果有A种,因此第三次打开房门的概率P(A)==.(另法)
(2)三次内打开房门的结果有3A种,因此,所求概率P(A)==.
(3)法1:三次内打开的结果包括:三次内恰有一次打开的结果有CAAA种;三次内恰有2次打开的结果有AA种.因此,三次内打开的结果有CAAA+AA种,所求概率
P(A)==.
法2:只计算三次,分只有一次打开,恰有两次打开:.
法3:因5把内有2把房门钥匙,故三次内打不开的结果有AA种,从而三次内打开的结果有A-AA种,所求概率P(A)==.
9.从男生和女生共36人的班级中任意选出2人去完成某项任务,这里任何人当选的机会都是相同的,如果选出的2人有相同性别的概率是,求这个班级中的男生,女生各有多少人?
解: 设此班有男生n人(n∈N,n≤36),则有女生(36-n)人,
从36人中选出有相同性别的2人,只有两种可能,即2人全为男生,或2人全为女生.
从36人中选出有相同性别的2人,共有(Cn2+C36-n2)种选法.
因此,从36人中选出2人,这2人有相同性别的概率为
依题意,有=
经过化简、整理,可以得到
n2-36n+315=0.
所以n=15或n=21,它们都符合n∈N,n<36.
答:此班有男生15人,女生21人;或男生21人,女生15人.
8.把编号为1到6的六个小球,平均分到三个不同的盒子内,求:
(1)每盒各有一个奇数号球的概率;
(2)有一盒全是偶数号球的概率.
解:6个球平均分入三盒有CCC种等可能的结果.
(1)每盒各有一个奇数号球的结果有AA种,
所求概率P(A)==.
(2)有一盒全是偶数号球的结果有(CC)·CC,
所求概率P(A)==.
7.某产品中有7个正品,3个次品,每次取一只测试,取后不放回,直到3只次品全被测出为止,求经过5次测试,3只次品恰好全被测出的概率。
解:“5次测试”相当于从10只产品中有序的取出5只产品,共有种等可能的基本事件,“3只次品恰好全被测出”指5件中恰有3件次品,且第5件是次品,共有种,所以所求的概率为。
5. ; 6. P==.
[解答题]
4.分母46,分子C61C52A44,所求概率为;
3.10位同学总参赛次序A.先将一班3人捆在一起A,与另外5人全排列A,二班2位同学插空A,即AAA.所求概率= .
2.抽取3个数全为偶数,或2个奇数1个偶数,概率为= .
6.用数字1,2,3,4,5组成五位数,其中恰有4个相同数字的概率等于_______.
◆练习简答:1-3.ACB;
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com