8. (09·广东文科基础·57) 图7所示是一个玩具陀螺。a、b和c是陀螺上的三个点。当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是 ( B )
A.a、b和c三点的线速度大小相等 B.a、b和c三点的角速度相等
C.a、b的角速度比c的大 D.c的线速度比a、b的大
7.(09·广东理科基础·16)如图所示,一带负电粒子以某速度进入水平向右的匀强电场中,在电场力作用下形成图中所示的运动轨迹。M和N是轨迹上的两点,其中M点在轨迹的最右点。不计重力,下列表述正确的是( C )
A.粒子在M点的速率最大
B.粒子所受电场力沿电场方向
C.粒子在电场中的加速度不变
D.粒子在电场中的电势能始终在增加
解析:根据做曲线运动物体的受力特点合力指向轨迹的凹一侧,再结合电场力的特点可知粒子带负电,即受到的电场力方向与电场线方向相反,B错;从N到M电场力做负功,减速,电势能在增加,当达到M点后电场力做正功加速电势能在减小则在M点的速度最小A错,D错;在整个过程中只受电场力,根据牛顿第二定律加速度不变。
6.(09·广东理科基础·11)宇宙飞船在半径为R。的轨道上运行,变轨后的半径为R2,R1>R2。宇宙飞船绕地球做匀速圆周运动,则变轨后宇宙飞船的 ( D )
A.线速度变小 B.角速度变小
C.周期变大 D.向心加速度变大
解析:根据得,可知变轨后飞船的线速度变大,A错;角速度变大B错,周期变小C错;向心加速度在增大D正确。
5.(09·广东理科基础·7)滑雪运动员以20m/s的速度从一平台水平飞出,落地点与飞出点的高度差3.2m。不计空气阻力,g取10m/s2。运动员飞过的水平距离为s,所用时间为t,则下列结果正确的是 ( B )
A.s=16m,t=0.50s B.s=16m,t=0.80s
C.s=20m,t=0.50s D.s=20m,t=0.80s
解析:做平抛运动的物体运动时间由高度决定,根据竖直方向做自由落体运动得。根据水平方向做匀速直线运动可知,B正确。
4.(09·宁夏·15)地球和木星绕太阳运行的轨道都可以看作是圆形的。已知木星的轨道半径约为地球轨道半径的5.2倍,则木星与地球绕太阳运行的线速度之比约为 ( B )
A. 0.19 B. 0.44 C. 2.3 D. 5.2
3.(09·广东理科基础·6)船在静水中的航速为v1,水流的速度为v2。为使船行驶到河正对岸的码头,则v1相对v2的方向应为 ( C )
解析:根据运动的合成与分解的知识,可知要使船垂直达到对岸即要船的合速度指向对岸。根据平行四边行定则,C能。
2.(09·海南物理·6)近地人造卫星1和2绕地球做匀速圆周运动的周期分别为T1和,设在卫星1、卫星2各自所在的高度上的重力加速度大小分别为、,则 ( B )
A. B.
D. D.
1.(09·上海·43)右图为一种早期的自行车,这种下带链条传动的自行车前轮的直径很大,这样的设计在当时主要是为了 ( A )
A.提高速度 B.提高稳定性
C.骑行方便 D.减小阻力
4、圆周运动中实例分析
[例8]如图所示,是双人花样滑冰运动中男运动员拉着女运动员做圆锥摆运动的精彩场面.若女运动员做圆锥摆运动时和竖直方向的夹角为B,女运动员的质量为m,转动过程中女运动员的重心做匀速圆周运动的半径为r,求这时男运动员对女运动员的拉力大小及两人转动的角速度
解析:依圆锥摆原理,男运动员对女运动员的拉力F=mg/cosθ,女运动员做圆周运动的向心力F向=mgtanθ,则由动力学方程得mgtanθ=mω2r,得
[例9]如图所示为一实验小车中利用光脉冲测量车速和行程的装置的示意图,A为光源,B为电接收器,A、B均固定在车身上,C为小车的车轮,D为与C同轴相连的齿轮.车轮转动时,A发出的光束通过旋转齿轮上齿的间隙后变成脉冲光信号,被B接收并转换成电信号,由电子电路记录和显示.若实验显示单位时间内的脉冲数为n,累计脉冲数为N, 则要测出小车的速度和行程还必须测量的物理量或数据是 ;车速度的表达式为v= ;行程的表达式为s=
解析:由题可知,每经过一个间隙,转化成一个脉冲信号被接收到,每个间隙转动的时间t=1/n。
设一周有P个齿轮,则有P个间隙,周期T=Pt=P/n。据v=2πR/T=2πnR/P,
所以必须测量车轮的半径R和齿数P,当肪冲总数为N,则经过的时间t0=Nt=N/n.
所以位移
[例10]若近似认为月球绕地公转与地球绕日公转的轨道在同一平面内,且均为正圆,又知这两种转动同向,如图所示,月相变化的周期为29.5 天(图示是相继两次满月时,月、地、日相对位置的示意图)。求:月球绕地球转一周所用的时间T(因月球总是一面朝向地球,故T恰是月球自转周期)。(提示:可借鉴恒星日、太阳日的解释方法)。
3、圆周运动与其它运动的结合
圆周运动和其他运动相结合,要注意寻找这两种运动的结合点:如位移关系、速度关系、时间关系等.还要注意圆周运动的特点:如具有一定的周期性等.
[例5]如图所示,M,N是两个共轴圆筒的横截面,外筒半径为R,内筒半径比R小很多,可以忽略不计。简的两端是封闭的,两筒之间抽成真空,两筒以相同角速度。转其中心轴线(图中垂直于纸面)作匀速转动,设从M筒内部可以通过窄缝S(与M筒的轴线平行)不断地向外射出两种不同速率v1和v2的微粒,从S处射出时初速度方向都是沿筒的半径方向,微粒到达N筒后就附着在N筒上,如果R、v1和v2都不变,而ω取某一合适的值,则()
A.有可能使微粒落在N筒上的位置都在c处一条与S缝平行的窄条上
B.有可能使微粒落在N筒上的位置都在某一处如b处一条与S缝平行的窄条上
C.有可能使微粒落在N筒上的位置分别在某两处如b处和C处与S缝平行的窄条上
D.只要时间足够长,N筒上将到处落有微粒
解:微粒从M到N运动时间t=R/v,对应N筒转过角度θ=ωt=ωR/v, 即θ1=ωt=ωR/v1, θ2=ωt=ωR/v2, 只要θ1、θ2不是相差2π的整数倍,则落在两处,C项正确;若相差2π的整数倍,则落在一处,可能是a处,也可能是b处。A,B正确。故正确选项为ABC.
[例6]如图所示,穿过光滑水平平面中央小孔O的细线与平面上质量为m的小球P相连,手拉细线的另一端,让小球在水平面内以角速度ω1沿半径为a的圆周做匀速圆周运动。所有摩擦均不考虑。 求:
(1)这时细线上的张力多大?
(2)若突然松开手中的细线,经时间Δt再握紧细线,随后小球沿半径为b的圆周做匀速圆周运动。试问:Δt等于多大?这时的角速度ω2为多大?
分析:手松后,小球不受力,将做匀速直线运动,求时间必须明确位移。正确画出松手后到再拉紧期间小球的运动情况是解题的关键。求Wz要考虑到速度的分解:小球匀速直线运动速度要在瞬间变到沿圆周切向,实际的运动可看做沿绳的切向和垂直切向的两个运动同时进行,画出速度分解图,可求得半径为b的圆周运动的速度,进而求出ω2。
解:(1)绳的张力提供向心力:T=mω12a
(2)松手后小球由半径为a圆周运动到半径为b的圆周上,做的是匀速直线运动(如图所示)。
小球匀速直线运动速度要在瞬间变到沿圆周切向,实际的运动可看做沿绳的切向和垂直切向的两个运动同时进行,有v2=vsinθ=va/b,即
[例7]如图所示,位于竖直平面上的1/4圆轨道,半径为R,OB沿竖直方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,最后落在地面上C点处,不计空气阻力,求:
(1)小球则运动到B点时,对轨道的压力多大?
(2)小球落地点C与B点水平距离S为多少?
(3)比值R/H为多少时,小球落地点C与B点水平距离S最远?该水平距离最大值是多少?
解析:(1)小球沿圆弧做圆周运动,在B点由牛顿第二定律有NB-mg=mv2/R ①
由A至B,机械能守恒,故有mgR=½mv2 ②
由此解出NB=3mg
(2)小球离B点后做平抛运动: 在竖立方向有:H-R=½gt2 ③ 水平方向有:S=vt ④
由②③④解出:s= ⑤
(3)由⑤式得s= ⑥
由⑥式可知当R=H/2时,s有最大值,且为smax=H
答案:NB=3mg,s=,smax=H
点评:对于比较复杂的问题,一定要注意分清物理过程,而分析物理过程的前提是通过分析物体的受力情况进行.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com