6.某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-Q2,则总利润L(Q)的最大值是 .
解析:总利润L(Q)=40Q-Q2-10Q-2 000
=-(Q-300)2+2 500.
故当Q=300时,总利润最大值为2 500万元.
答案:2 500万元
题组三 |
指数函数模型 |
5.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得最大利润为 ( )
A.45.606 B.45.6 C.45.56 D.45.51
解析:依题意可设甲销售x辆,则乙销售(15-x)辆,
∴总利润S=5.06x-0.15x2+2(15-x)
=-0.15x2+3.06x+30(x≥0).
∴当x=10时,Smax=45.6(万元).
答案:B
4.某工厂第三年的产量比第一年的产量增长44%,若每年的平均增长率相同(设为x),则以下结论正确的是 ( )
A.x>22%
B.x<22%
C.x=22%
D.x的大小由第一年的产量确定
解析:(1+x)2=1+44%,解得x=0.2<0.22.故选B.
答案:B
3.(2010·邯郸模拟)图形M(如图所示)是由底为1,高为1的等腰
三角形及高为2和3的两个矩形所构成,函数S=S(a)(a≥0)是
图形M介于平行线y=0及y=a之间的那一部分面积,则函数
S(a)的图象大致是 ( )
解析:依题意,当a≤1时,
S(a)=+2a=-+3a;
当1<a≤2时,S(a)=+2a;
当2<a≤3时,S(a)=+2+a=a+;
当a>3时,S(a)=+2+3=,
于是S(a)=由解析式可知选C.
答案:C
题组二 |
二次函数模型 |
2.某文具用品店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每只定价5元,该店制定了两种优惠方法:①买一副球拍赠送一只羽毛球;②按总价的92%付款.某人计划购买4副球拍,羽毛球30只,两种优惠方法中,更省钱的一种是 ( )
A.不能确定 B.①②同样省钱
C.②省钱 D.①省钱
解析:①种方法需20×4+5×(30-4)=210元,②种方法需(20×4+5×30)×92%=211.6元.故①种方法省钱.
答案:D
1.已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地到达B地,
B地 停留1小时后再以50千米/小时的速度返回A地,把汽车离开A地的距离x表示为时t(小时)的 函数表达式是 ( )
A.x=60t+50t(0≤t≤6.5)
B.x=
C.x=
D.x=
解析:依题意,函数为分段函数,求出每一段上的解析式即可.
答案:D
16、
(1)
(2)当即时;
(3)
13、 14、 15、
11、(1,3)或 12 、 5
16、已知函数
(1)求的最小正周期;
(2)求的最大值及取得最大值时x的取值集合;
(3)若,求的值。
基础训练01
一 选择题
二 填空题
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com