0  405487  405495  405501  405505  405511  405513  405517  405523  405525  405531  405537  405541  405543  405547  405553  405555  405561  405565  405567  405571  405573  405577  405579  405581  405582  405583  405585  405586  405587  405589  405591  405595  405597  405601  405603  405607  405613  405615  405621  405625  405627  405631  405637  405643  405645  405651  405655  405657  405663  405667  405673  405681  447090 

2、 一个物体在做初速度为零的匀加速直线运动,已知它在第一个△t时间内的位移为s,若 △t未知,则可求出        (  )

A.  第一个△t时间内的平均速度

B.  第n个△t时间内的位移

C.  n△t时间的位移

D.  物体的加速度 

解析:因=,而△t未知,所以不能求出,故A错.因(2n-1)s,故B正确;又s∝t2  所以=n2,所以sn=n2s,故C正确;因a=,尽管△s=sn-sn-1可求,但△t未知,所以A求不出,D错.

答案:B、C

试题详情

1、 下列关于所描述的运动中,可能的是    (     )

A 速度变化很大,加速度很小

B 速度变化的方向为正,加速度方向为负

C 速度变化越来越快,加速度越来越小

D 速度越来越大,加速度越来越小

解析:由a=△v/△t知,即使△v很大,如果△t足够长,a可以很小,故A正确。速度变化的方向即△v的方向,与a方向一定相同,故B错。加速度是描述速度变化快慢的物理量,速度变化快,加速度一定大。故C错。加速度的大小在数值上等于单位时间内速度的改变量,与速度大小无关,故D正确。

答案:A、D

试题详情

例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s,1s后速度的大小变为10m/s,在这1s内该物体的           (    )

A.位移的大小可能小于4m

B.位移的大小可能大于10m

C.加速度的大小可能小于4m/s

D.加速度的大小可能大于10m/s

析:同向时

     

   反向时

     

式中负号表示方向跟规定正方向相反

答案:A、D

例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知  (    )

A  在时刻t2以及时刻t5两木块速度相同

B  在时刻t1两木块速度相同

C  在时刻t3和时刻t4之间某瞬间两木块速度相同

D  在时刻t4和时刻t5之间某瞬间两木块速度相同

解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。由于t2及t3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t3、t4之间

答案:C

例题3  一跳水运动员从离水面10m高的平台上跃起,举双臂直立身体离开台面,此时中心位于从手到脚全长的中点,跃起后重心升高0.45m达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳台到手触水面,他可用于完成空中动作的时间是多少?(g取10m/s2结果保留两位数字)

解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向的运动,因此运动员做的是竖直上抛运动,由可求出刚离开台面时的速度,由题意知整个过程运动员的位移为-10m(以向上为正方向),由得:

-10=3t-5t2

解得:t≈1.7s

思考:把整个过程分为上升阶段和下降阶段来解,可以吗?

例题4.如图所示,有若干相同的小钢球,从斜面上的某一位置每隔0.1s释放一颗,在连续释放若干颗钢球后对斜面上正在滚动的若干小球摄下照片如图,测得AB=15cm,BC=20cm,试求:

(1)    拍照时B球的速度;

(2)    A球上面还有几颗正在滚动的钢球

解析:拍摄得到的小球的照片中,A、B、C、D…各小球的位置,正是首先释放的某球每隔0.1s所在的位置.这样就把本题转换成一个物体在斜面上做初速度为零的匀加速运动的问题了。求拍摄时B球的速度就是求首先释放的那个球运动到B处的速度;求A球上面还有几个正在滚动的小球变换为首先释放的那个小球运动到A处经过了几个时间间隔(0.1s)

(1)A、B、C、D四个小球的运动时间相差△T=0.1s

VB==m/s=1.75m/s

(2)由△s=a△T2得:

a=m/s2==5m/s2

例5:火车A以速度v1匀速行驶,司机发现正前方同一轨道上相距s处有另一火车B沿同方向以速度v2(对地,且v2〈v1〉做匀速运动,A车司机立即以加速度(绝对值)a紧急刹车,为使两车不相撞,a应满足什么条件?

分析:后车刹车做匀减速运动,当后车运动到与前车车尾即将相遇时,如后车车速已降到等于甚至小于前车车速,则两车就不会相撞,故取s=s+s和v≤v求解

解法一:取取上述分析过程的临界状态,则有

v1t-a0t2=s+v2t

v1-a0t = v2

a0 =

所以当a≥  时,两车便不会相撞。

法二:如果后车追上前车恰好发生相撞,则

v1t-at2 = s +v2t

上式整理后可写成有关t的一元二次方程,即

at2+(v2-v1)t+s = 0

取判别式△〈0,则t无实数解,即不存在发生两车相撞时间t。△≥0,则有

(v2-v1)2≥4(a)s

得a≤

为避免两车相撞,故a≥

法三:运用v-t图象进行分析,设从某时刻起后车开始以绝对值为a的加速度开始刹车,取该时刻为t=0,则A、B两车的v-t图线如图所示。图中由v1 、v2、C三点组成的三角形面积值即为A、B两车位移之差(s-s)=s,tanθ即为后车A减速的加速度绝对值a0。因此有

(v1-v2)=s

所以 tanθ=a0=

若两车不相撞需a≥a0=

试题详情

13. 如图10所示,一个弹簧台秤的秤盘和弹簧质量均不计,盘内放一个质量的静止物体P,弹簧的劲度系数。现施加给P一个竖直向上的拉力F,使P从静止开始向上做匀加速运动。已知在头0.2s内F是变力,在0.2s以后,F是恒力,取,求拉力F的最大值和最小值。

试题详情

12. 如图9所示,在倾角为的长斜面上有一带风帆的滑块,从静止开始沿斜面下滑,滑块质量为m,它与斜面间的动摩擦因数为,帆受到的空气阻力与滑块下滑速度的大小成正比,即

   (1)写出滑块下滑加速度的表达式。

   (2)写出滑块下滑的最大速度的表达式。

   (3)若,从静止下滑的速度图象如图所示的曲线,图中直线是t=0时的速度图线的切线,由此求出和k的值。

试题详情

11. 如图8所示,A、B两个物体靠在一起放在光滑水平面上,它们的质量分别为。今用水平力推A,用水平力拉B,随时间变化的关系是。求从t=0到A、B脱离,它们的位移是多少?

试题详情

9. 如图7所示,传送带AB段是水平的,长20 m,传送带上各点相对地面的速度大小是2 m/s,某物块与传送带间的动摩擦因数为0.1。现将该物块轻轻地放在传送带上的A点后,经过多长时间到达B点?(g取)

试题详情

8. 如图6所示,倾斜的索道与水平方向的夹角为37°,当载物车厢加速向上运动时,物对车厢底板的压力为物重的1.25倍,这时物与车厢仍然相对静止,则车厢对物的摩擦力的大小是物重的________倍。

试题详情

7. 质量的物体在拉力F作用下沿倾角为30°的斜面斜向上匀加速运动,加速度的大小为,力F的方向沿斜面向上,大小为10N。运动过程中,若突然撤去拉力F,在撤去拉力F的瞬间物体的加速度的大小是____________;方向是____________。

试题详情


同步练习册答案