0  405488  405496  405502  405506  405512  405514  405518  405524  405526  405532  405538  405542  405544  405548  405554  405556  405562  405566  405568  405572  405574  405578  405580  405582  405583  405584  405586  405587  405588  405590  405592  405596  405598  405602  405604  405608  405614  405616  405622  405626  405628  405632  405638  405644  405646  405652  405656  405658  405664  405668  405674  405682  447090 

1.万有引力定律发现的思路、方法

   开普勒解决了行星绕太阳在椭圆轨道上运行的规律,但没能揭示出行星按此规律运动的原因.英国物理学家牛顿(公元1642-1727)对该问题进行了艰苦的探索,取得了重大突破.

   首先,牛顿论证了行星的运行必定受到一种指向太阳的引力.

   其次,牛顿进一步论证了行星沿椭圆轨道运行时受到太阳的引力,与它们的距离的二次方成反比.为了在中学阶段较简便地说明推理过程,课本中是将椭圆轨道简化为圆形轨道论证的.

   第三,牛顿从物体间作用的相互性出发,大胆假设并实验验证了行星受太阳的引力亦跟太阳的质量成正比.因此得出:太阳对行星的行力跟两者质量之积成正比.

最后,牛顿做了著名的“月一地”检验,将引力合理推广到宇宙中任何两物体,使万有引力规律赋予普遍性.

试题详情

例1  一电子在如图3-1所示按正弦规律变化的外力作用下由静止释放,则物体将:

A、作往复性运动

B、t1时刻动能最大

C、一直朝某一方向运动

D、t1时刻加速度为负的最大。

评析  电子在如图所示的外力作用下运动,根据牛顿第二定律知,先向正方向作加速度增大的加速运动,历时t1;再向正方向作加速度减小的加速运动,历时(t2~t1);(0~t2)整段时间的速度一直在增大。紧接着在(t2~t3)的时间内,电子将向正方向作加速度增大的减速运动,历时(t3~t2);(t3~t4)的时间内,电子向正方向作加速度减小的减速运动,根据对称性可知,t4时刻的速度变为0(也可以按动量定理得,0~t4时间内合外力的冲量为0,冲量即图线和坐标轴围成的面积)。其中(0~t2)时间内加速度为正;(t2~t4)时间内加速度为负。正确答案为:C。

注意  公式中F、间的关系是瞬时对应关系,一段时间内可以是变力;而公式只适用于匀变速运动,但在变加速运动中,也可以用之定性地讨论变加速运动速度及位移随时间的变化趋势。

上题中,如果F-t图是余弦曲线如图3-2所示,则情况又如何?

如果F-t图是余弦曲线,则答案为A、B。

例2  如图3-3所示,两个完全相同的小球,分别在光滑的水平面和浅凹形光滑曲面上滚过相同的水平距离,且始终不离开接触面。球是由水平面运动到浅凹形光滑曲线面,再运动到水平面的,所用的时间分别为t1和t2,试比较t1、t2的大小关系:

A、t1>t2   B、t1=t2     C、t1<t2    D、无法判定

评析  小球滚下去的时候受到凹槽对它的支持力在水平向分力使之在水平方向作加速运动;而后滚上去的时候凹槽对它的支持力在水平方向分力使之在水平方向作减速运动,根据机械能守恒定律知,最后滚到水平面上时速度大小与原来相等。故小球在整个过程中水平方向平均速度大,水平距离一样,则所用时间短。答案:A。

例3  如图3-4所示,轻弹簧的一端固定在地面上,另一端与木块B相连。木块A放在B上。两木块质量均为,竖直向下的力F作用在A上,A、B均静止,问:

(1)将力F瞬间撤去后,A、B共同运动到最高点,此时B对A的弹力多大?

(2)要使A、B不会分开、力F应满足什么条件?

评析  (1)如果撤去外力后,A、B在整个运动过程中互不分离,则系统在竖直向上作简揩运动,最低点和最高点关于平衡位置对称,如图3-5所示,设弹簧自然长度为,A、B放在弹簧上面不外加压力F且系统平衡时,如果弹簧压至O点,压缩量为b,则:。外加压力F后等系统又处于平衡时,设弹簧又压缩了A,则:,即:

当撤去外力F后,系统将以O点的中心,以A为振幅在竖直平面内上下作简谐运动。在最低点:,方向向上,利用牛顿第二定律知,该瞬间加速度:,方向向上;按对称性知系统在最高点时:,方向向下。

此时以B为研究对象进行受力分析,如图3-6所示,按牛顿第二定律得:

(2)A、B未分离时,加速度是一样的,且A、B间有弹力,同时最高点最容易分离。分离的临界条件是:(或者:在最高点两者恰好分离时对A有:,表明在最高点弹簧处于自然长度时将要开始分离,即只要:时A、B将分离)。所以要使A、B不分离,必须:

例4  如图3-7所示,在空间存在水平方向的匀强磁场(图中未画出)和方向竖直向上的匀强电场(图中已画出),电场强度为E,磁感强度为B。在某点由静止释放一个带电液滴,它运动到最低点恰与一个原来处于静止状态的带电液滴b相撞,撞后两液滴合为一体,并沿水平方向做匀速直线运动,如图所示,已知的质量为b的2倍,的带电量是b的4倍(设、b间静电力可忽略)。

(1)试判断、b液滴分别带何种电荷?

(2)求当、b液滴相撞合为一体后,沿水平方向做匀速直线的速度及磁场的方向;

(3)求两液滴初始位置的高度差

评析  (1)设b质量为,则带电量为4q,因为如果带正电,要向下偏转,则必须:;而对b原来必须受力平衡,则:。前后相矛盾,表明带负电,b带正电。

(2)设与b相撞前的速度,下落的过程中重力、电场力做正功,由动能定理有:。由于b原来处于静止状态:

由以上两式可得:

、b相撞的瞬间动量守恒:。得

而电荷守恒,故:

、b碰撞后粘在一起做匀速直线运动,按平衡条件得:,则:。所以:

例5  如图3-8所示,一单匝矩形线圈边长分别为、b,电阻为R,质量为m,从距离有界磁场边界高处由静止释放,试讨论并定性作出线圈进入磁场过程中感应电流随线圈下落高度的可能变化规律。

评析  线圈下落高度时速度为:

下边刚进入磁场时切割磁感线产生的感应电动势:。产生的感应电流:I=,受到的安培力:

讨论  (1)如果,即:,则:线圈将匀速进入磁场,此时:(变化规律如图3-9所示)

(2)如果,表明较小,则:线圈加速进入磁场,但随着有三种可能:

①线圈全部进入磁场时还未达到稳定电流I0(变化规律如图3-10所示)

②线圈刚全部进入磁场时达到稳定电流I0(变化规律如图3-11所示)

③线圈未全部进磁场时已达到稳定电流I0(变化规律如图3-12所示)

(3)如果,则:线圈减速进入磁场,但随着,故线圈将作减小的减速运动。

有三种可能:

①线圈全部进入磁场时还未达到稳定电流I0(变化规律如图3-13所示)

②线圈刚全部进入磁场时达到稳定电流I0(变化规律如图3-14所示)

③线圈未全部进入磁场时已达到稳定电流I0(变化规律如图3-15所示)

例6  光从液面到空气时的临界角C为45°,如图3-16所示,液面上有一点光源S发出一束光垂直入射到水平放置于液体中且到液面的距离为d的平面镜M上,当平面镜M绕垂直过中心O的轴以角速度做逆时针匀速转动时,观察者发现水面上有一光斑掠过,则观察者们观察到的光斑的光斑在水面上掠过的最大速度为多少?

评析  本题涉及平面镜的反射及全反射现象,需综合运用反射定律、速度的合成与分解、线速度与角速度的关系等知识求解,确定光斑掠移速度的极值点及其与平面镜转动角速度间的关系,是求解本例的关键。

设平面镜转过角时,光线反射到水面上的P点,光斑速度为,如图3-17可知:,而:

故:,而光从液体到空气的临界角为C,所以当时达到最大值,即:

例7  如图3-18所示为一单摆的共振曲线,则该单摆的摆长约为多少?共振时单摆的振幅多大?共振时摆球简谐运动的最大加速度和最大速度大小各为多少?(取10m/s2)

评析  这是一道根据共振曲线所给信息和单摆振动规律进行推理和综合分析的题目,本题涉及到的知识点有受迫振动、共振的概念和规律、单摆摆球做简谐运动及固有周期、频率、能量的概念和规律等。由题意知,当单摆共振时频率,即:,振幅A=8cm=0.08m,由得:

如图3-19所示,摆能达到的最大偏角的情况下,共振时:,(其中以弧度为单位,当很小时,,弦A近似为弧长。)所以: 。根据单摆运动过程中机械能守恒可得:。其中:

例8  已知物体从地球上的逃逸速度(第二宇宙速度),其中G、ME、RE分别是引力常量、地球的质量和半径。已知G=6.7×10-11N·m2/kg2,c=3.0×108m/s,求下列问题:(1)逃逸速度大于真空中光速的天体叫做黑洞,设某黑洞的质量等于太阳的质量M=2.0×1030kg,求它的可能最大半径(这个半径叫Schwarhid半径);(2)在目前天文观测范围内,物质的平均密度为10-27kg/m3,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大?(最后结果保留两位有效数字)

解析  (1)由题目所提供的信息可知,任何天体均存在其所对应的逃逸速度,其中M、R为天体的质量和半径,对于黑洞模型来说,其逃逸速度大于真空中的光速,即,所以:

即质量为kg的黑洞的最大半径为(m)

(2)把宇宙视为一普通天体,则其质量为,其中R为宇宙的半径,为宇宙的密度,则宇宙所对应的逃逸速度为,由于宇宙密度使得其逃逸速度大于光速c。即:。则由以上三式可得:,合4.2×1010光年。即宇宙的半径至少为4.2×1010光年。

试题详情

所谓变加速运动,即加速度(大小或方向或两者同时)变化的运动,其轨迹可以是直线,也可以是曲线;从牛顿第二定律的角度来分析,即物体所受的合外力是变化的。

本章涉及的中学物理中几种典型的变加速运动如:简谐运动,圆周运动,带电粒子在电场、磁场和重力场等的复合场中的运动,原子核式结构模型中电子绕原子核的圆周运动等。故涉及到力学、电磁学及原子物理中的圆周运动问题。

试题详情

10、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边赶过汽车。试求:

(1)        汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?

(2)        什么时候汽车追上自行车,此时汽车的速度是多少?

解析:解法一:汽车开动后速度由零逐渐增大,而自行车的速度是定值。当汽车的速度还小于自行车速度时,两者的距离将越来越大,而一旦汽车速度增加到超过自行车速度时,两车距离就将缩小。因此两者速度相等时两车相距最大,有,所以,  

解法二:用数学求极值方法来求解

(1)    设汽车在追上自行车之前经过t时间两车相距最远,

因为

所以,由二次函数求极值条件知,时,最大

(2)汽车追上自行车时,二车位移相等,则

  , 

             

解法三:用相对运动求解更简捷

选匀速运动的自行车为参考系,则从运动开始到相距最远这段时间内,汽车相对此参考系的各个物理量为:

初速度v0  = v汽初-v=(0-6)m/s  = -6m/s

末速度vt  = v汽末-v=(6-6)m/s  = 0

加速度 a  = a-a=(3-0)m/s2  = 3m/s2

所以相距最远 s=  =-6m(负号表示汽车落后)

解法四:用图象求解

(1)自行车和汽车的v-t图如图,由于图线与横坐标轴所包围的面积表示位移的大小,所以由图上可以看出:在相遇之前,在t时刻两车速度相等时,自行车的位移(矩形面积)与汽车的位移(三角形面积)之差(即斜线部分)达最大,所以

t=v/a=s=2s

△s= vt-at2/2 =(6×2-3×22/2)m= 6m

(2)由图可看出:在t时刻以后,由v或与v线组成的三角形面积与标有斜线的三角形面积相等时,两车的位移相等(即相遇)。所以由图得相遇时,t’= 2t = 4s,v’= 2v=12m/s

答案 (1)2s 6m   (2)12m/s

试题详情

8、摩托车在平直公路上从静止开始起动,a1=1.6m/s2,稍后匀速运动,然后减速,a2=6.4m/s2,直到停止,共历时130s,行程1600m。试求:

(1)    摩托车行驶的最大速度vm

(2)    若摩托车从静止起动,a1、a2不变,直到停止,行程不变,所需最短时间为多少?

分析:(1)整个运动过程分三个阶段:匀加速运动;匀速运动;匀减速运动。可借助v-t图象表示。

(2)首先要回答摩托车以什么样的方式运动可使得时间最短。借助v-t图象可以证明:当摩托车以a1匀加速运动,当速度达到v/m时,紧接着以a2匀减速运动直到停止时,行程不变,而时间最短

解:(1)如图所示,利用推论vt2-v02=2as有:+(130-)vm+=1600.其中a1=1.6m/s2,a2=6.4m/s2.解得:vm=12.8m/s(另一解舍去).

(2)路程不变,则图象中面积不变,当v越大则t越小,如图所示.设最短时间为tmin,则tmin=  ①=1600  ②

其中a1=1.6m/s2,a2=6.4m/s2.由②式解得vm=64m/s,故tmin=.既最短时间为50s.

答案:(1)12.8m/s  (2)50s

9一平直的传送以速率v=2m/s匀速行驶,传送带把A处的工件送到B处,A、B两处相距L=10m,从A处把工件无初速度地放到传送带上,经时间t=6s能传送到B处,欲使工件用最短时间从A处传送到B处,求传送带的运行速度至少应多大?

解析:物体在传送带上先作匀加速运动,当速度达到v=2m/s后与传送带保持相对静止,作匀速运动.设加速运动时间为t,加速度为a,则匀速运动的时间为(6-t)s,则:

v=at  ① 

s1=at2  ②

s2=v(6-t)  ③

s1+s2=10  ④

联列以上四式,解得t=2s,a=1m/s2

物体运动到B处时速度即为皮带的最小速度

由v2=2as   得v=m/s

传送带给物体的滑动摩擦力提供加速度,即此加速度为物体运动的最大加速度.要使物体传送时间最短,应让物体始终作匀加速运动

试题详情

7、天文观测表明,几乎所有远处的恒星(或星系)都在以各自的速度背离我们而运动,离我们越远的星体,背离我们运动的速度(称为退行速度)越大;也就是说,宇宙在膨胀,不同星体的退行速度v和它们离我们的距离r成正比,即v=Hr。式中H为一常量,称为哈勃常数,已由天文观察测定,为解释上述现象,有人提供一种理论,认为宇宙是从一个大爆炸的火球开始形成的,假设大爆炸后各星体即以不同的速度向外匀速运动,并设想我们就位于其中心,则速度越大的星体现在离我们越远,这一结果与上述天文观测一致。

  由上述理论和天文观测结果,可估算宇宙年龄T,其计算式如何?根据近期观测,哈勃常数H=3×10-2m/(s 光年),其中光年是光在一年中行进的距离,由此估算宇宙的年龄约为多少年?

解析:由题意可知,可以认为宇宙中的所有星系均从同一点同时向外做匀速直线运动,由于各自的速度不同,所以星系间的距离都在增大,以地球为参考系,所有星系以不同的速度均在匀速远离。则由s=vt可得r=vT,所以,宇宙年龄:T===

若哈勃常数H=3×10-2m/(s 光年)

则T==1010

思考:1 宇宙爆炸过程动量守恒吗?如果爆炸点位于宇宙的“中心”,地球相对于这个“中心”做什么运动?其它星系相对于地球做什么运动?

  2 其它星系相对于地球的速度与相对于这个“中心”的速度相等吗?

试题详情

6、一物体在A、B两点的正中间由静止开始运动(设不会超越A、B),其加速度随时间变化如图所示。设向A的加速度为为正方向,若从出发开始计时,则物体的运动情况是(    )

A 先向A ,后向B,再向A,又向B,4秒末静止在原处

B 先向A ,后向B,再向A,又向B,4秒末静止在偏向A的某点

C 先向A ,后向B,再向A,又向B,4秒末静止在偏向B的某点

D 一直向A运动,4秒末静止在偏向A的某点

解析:根据a-t图象作出其v-t图象,如右图所示,由该图可以看出物体的速度时大时小,但方向始终不变,一直向A运动,又因v-t图象与t轴所围“面积”数值上等于物体在t时间内的位移大小,所以4秒末物体距A点为2米

答案:D

试题详情

5、在轻绳的两端各栓一个小球,一人用手拿者上端的小球站在3层楼阳台上,放手后让小球自由下落,两小球相继落地的时间差为T,如果站在4层楼的阳台上,同样放手让小球自由下落,则两小球相继落地时间差将   (     )

A 不变      B 变大       C 变小       D 无法判断

解析:两小球都是自由落体运动,可在一v-t图象中作出速度随时间的关系曲线,如图所示,设人在3楼阳台上释放小球后,两球落地时间差为△t1,图中阴影部分面积为△h,若人在4楼阳台上释放小球后,两球落地时间差△t2,要保证阴影部分面积也是△h;从图中可以看出一定有△t2〈△t1

答案:C

试题详情

4、汽车甲沿着平直的公路以速度v0做匀速直线运动,当它路过某处的同时,该处有一辆汽车乙开始做初速度为零的匀加速运动去追赶甲车,根据上述的已知条件(   )

A.   可求出乙车追上甲车时乙车的速度

B.   可求出乙车追上甲车时乙车所走的路程

C.   可求出乙车从开始起动到追上甲车时所用的时间

D.   不能求出上述三者中任何一个

分析:题中涉及到2个相关物体运动问题,分析出2个物体各作什么运动,并尽力找到两者相关的物理条件是解决这类问题的关键,通常可以从位移关系、速度关系或者时间关系等方面去分析。

解析:根据题意,从汽车乙开始追赶汽车甲直到追上,两者运动距离相等,即s=

=s=s,经历时间t=t=t.

那么,根据匀速直线运动公式对甲应有:

根据匀加速直线运动公式对乙有:,及

由前2式相除可得at=2v0,代入后式得vt=2v0,这就说明根据已知条件可求出乙车追上甲车时乙车的速度应为2v0。因a不知,无法求出路程和时间,如果我们采取作v-t图线的方法,则上述结论就比较容易通过图线看出。图中当乙车追上甲车时,路程应相等,即从图中图线上看面积s和s,显然三角形高vt等于长方形高v0的2倍,由于加速度a未知,乙图斜率不定,a越小,t越大,s也越大,也就是追赶时间和路程就越大。

答案:A

试题详情

3、汽车原来以速度v匀速行驶,刹车后加速度大小为a,做匀减速运动,则t秒后其位移为(   )

A    B      C   D  无法确定

解析:汽车初速度为v,以加速度a作匀减速运动。速度减到零后停止运动,设其运动的时间t=。当t≤t时,汽车的位移为s=;如果t>t,汽车在t时已停止运动,其位移只能用公式v2=2as计算,s=

答案:D

试题详情


同步练习册答案