7.一个几何体的三视图如图所示,
则这个几何体的体积等于( )
A. B.
C. D.
6.点在函数的图象上,点与点关于轴对称且在直线
上,则函数在区间上 ( )
A.既没有最大值也没有最小值 B.最小值为-3,无最大值
C.最小值为-3,最大值为9 D.最小值为,无最大值
5.下列命题中,所有正确命题的个数为 ( )
① 命题“若,则且”的逆命题是真命题;
② 个位数字为零的整数能被5整除,则个位数字不是零的整数不能被5整除;
③ 若随机变量,且,则
A.0 B.1 C.2 D.3
4.已知,则有 ( )
A. B.
C. D.
3.如图,已知正方形的面积为10,向正方形
内随机地撒200颗黄豆,数得落在阴影外
的黄豆数为114颗,以此实验数据为依据,
可以估计出阴影部分的面积约为( )
A.5.3 B.4.3
C.4.7 D.5.7
2.已知是虚数单位,和都是实数,且,则等于( )
A. B. C.1 D.-1
项是符合题目要求的。
1.设全集R,若集合,则为 ( )
A. B.
C. D.
19.(满分11分)新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230 的一部分,且点A,B,C的横坐标分别为4,10,12.
(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式; (2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程); (3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元? 20.(满分14分)如图,在平面直角坐标系xoy中,抛物线 与x轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从A,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)
(1)求A,B,C三点的坐标和抛物线的顶点的坐标; (2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程; (3)当0<t< 时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由; (4)当t为何值时,△PQF为等腰三角形?请写出解答过程.
18.(满分10分)如图,在海面上生成了一股强台风,台风中心(记为点M)位于海滨城市(记作点A)的南偏西15°,距离为 千米,且位于临海市(记作点B)正西方向 千米处.台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.
(1)滨海市、临海市是否会受到此次台风的侵袭?请说明理由. (2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?
17.(满分7分)为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):
|
一 |
二 |
三 |
四 |
五 |
六 |
七 |
八 |
九 |
十 |
甲种电子钟 |
1 |
-3 |
-4 |
4 |
2 |
-2 |
2 |
-1 |
-1 |
2 |
乙种电子钟 |
4 |
-3 |
-1 |
2 |
-2 |
1 |
-2 |
2 |
-2 |
1 |
(1) 计算甲、乙两种电子钟走时误差的平均数; (2) 计算甲、乙两种电子钟走时误差的方差; (3) 根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com