0  406244  406252  406258  406262  406268  406270  406274  406280  406282  406288  406294  406298  406300  406304  406310  406312  406318  406322  406324  406328  406330  406334  406336  406338  406339  406340  406342  406343  406344  406346  406348  406352  406354  406358  406360  406364  406370  406372  406378  406382  406384  406388  406394  406400  406402  406408  406412  406414  406420  406424  406430  406438  447090 

1、受力分析的顺序:先找重力,再找接触力(弹力、摩擦力),最后分析其它力(场力、浮力等)

试题详情

4、正交分解和等效替代

[例7]如图2-24(a)所示,A、B质量分别为mA和mB,叠放在倾角为θ的斜面上以相同的速度匀速下滑,则(    )

  (A)AB间无摩擦力作用    (B)B受到的滑动摩擦力大小为(mA+mB)gsinθ

  (C)B受到的静摩擦力大小为mAgsinθ  (D)取下A物体后,B物体仍能匀速下滑

解析:隔离A、B,A受力和坐标轴如图(b)所示,由平衡条件得:

    mAgsinθ-fA=0…………①    NA一mAgcosθ=0…………②

   B受力和坐标轴如图(C)所示,由平衡条件得:

    mBgsinθ+fA/-fB=0……………③    NB一mBgcosθ-NA/=0…………④

A、   B相对静止,fA为静摩擦力,B在斜面上滑动,fB为滑动摩擦力

  fB=μNB…………⑤    联立①式-⑤式得:

    fA=mAgsinθ,fB=(mA十mB)gsinθ,μ=tgθ

   取下A后,B受到的滑动磨擦力为fB=μmBgcosθ=mBgsinθ,

   B所受摩擦力仍等于重力沿斜面的下滑分力,所以B仍能作匀速直线运动·

   综上所述,本题应选择(B)、(C)、(D)。

[例8]某压榨机的结构示意图如图,其中B为固定铰链,若在A处作用于壁的力F,则由于力F的作用,使滑块C压紧物块D,设C与D光滑接触,杆的重力不计,求物体D受到的压力大小是F的几倍?(滑块重力不计)

解析:力F的作用效果是对AC、AB杆产生沿两杆的方向的力F1、F2,力F1产生对C的向左的力和向下的压力。由图可知tanα=100/10=10,F1=F2=F/2cosα,N=F1sinα=Fsinα/2cosα=5F。

试题展示

       物体的受力分析(隔离法与整体法)

基础知识一、物体受力分析方法

把指定的研究对象在特定的物理情景中所受到的所有外力找出来,并画出受力图,就是受力分析。对物体进行正确地受力分析,是解决好力学问题的关键。

试题详情

3、用三角形法则分析力的动态变化

[例5]如图所示,将一个重物用两根等长的细绳OA、OB悬挂在半圆形的架子上,在保持重物位置不动的前提下,B点固定不动,悬点A由位置C向位置D移动,直至水平,在这个过程中,两绳的拉力如何变化?

解析:根据力的作用效果,把F分解,其实质是合力的大小方向都不变,一个分力的方向不变,另一个分力的大小方向都在变化,由图中不不看出:OB绳子中的拉力不断增大,而OA绳中的拉力先减小后增大,当OA与OB垂直时,该力最小。

[例6]如图所示,质量为m的球放在倾角为α的光滑斜面上,试分析挡板AO与斜面间的倾角β多大时,AO所受压力最小?

   解析:虽然题目问的是挡板AO的受力情况,但若直接以挡板为研究对象,因挡板所受力均为未知力,将无法得出结论.

   以球为研究对象,球所受重力对也产生的效果有两个:对斜面产生了压力N1,对挡板产生了压力N2.根据重力产生的效果将重力分解,如图所示.

当挡板与斜面的夹角β由图示位置变化时.N1大小改变.但方向不变.始终与斜面垂直:N2的大小、方向均改变(图1一25中画出的一系列虚线表示变化的N2).由图可看出.当N2与N1垂直即β=900时,挡板AO所受压力最小,最小压力N2min=mgsinα.

也可用解析法进行分析,根据正弦定理有N2/sinα=mg/sinβ,所以N2=mgsinα/sinβ。而其中mgsinα是定值,N2随β的变化而变化

当β<900时,β↑→sinβ↑→N2↓;当β>900时,β↑→sinβ↓→N2↑;当β=900时,N2有最小值N2min=mgsinα;

说明:(1)力的分解不是随意的,要根据力的实际作用效果确定力的分解方向.

(2)利用图解法来定性地分析一些动态变化问题,简单直观有效,是经常使用的方法,要熟练掌握.

试题详情

物体受到多个力作用时求其合力,可将各个力沿两个相互垂直的方向直行正交分解,然后再分别沿这两个方向求出合力,正交分解法是处理多个力作用用问题的基本方法,步骤为:

①正确选择直角坐标系,一般选共点力的作用点为原点,水平方向或物体运动的加速度方向为X轴,使尽量多的力在坐标轴上。

②正交分解各力,即分别将各力投影在坐标轴上,分别求出坐标轴上各力投影的合力。

Fx=F1x+F2x+…+Fnx      Fy=F1y+F2y+…+Fny

③共点力合力的大小为F=,合力方向与X轴夹角

规律方法1、基本规律与方法的应用

[例1]两个力的合力与这两个力的关系,下列说法中正确的是:( CD )

A、  合力比这两个力都大

B、  合力至少比两个力中较小的力大

C、  合力可能比这两个力都小

D、  合力可能比这两个力都大

解析:(1)公式法:由合力公式F=

①    当θ=00时,F=F1+F2;②当θ=1800时,F=|F1-F2|;③当θ=900时,F=;④当θ=1200且F1=F2时,F=F1=F2

可见合力可能比任何一个分力都大,也可能比任何一个分力都小,也可能等于每一个分力

(2)图象法:由三角形定则知,合力与分力的关系实际上是三角形的一个边与其它两个边的关系。由两边之和大于第三边,两边之差小于第三边,同时考虑到两个分力同向或反向的情况,合力的取值范围为| F1-F2|≤F≤(F1+F2),故答案为CD

[例2]施用一动滑轮将一物体提起来,不计滑轮与绳的质量及其间的摩擦力,则(BCD)

   A.总可以省力一半;       B.最大省力一半;

   C.拉力可能大于被提物体的重量;  D.拉力可能等于被提物体的重量;          

   解析:如图1-21所示,当拉力沿竖直方向时.省力一半,当沿2的方向上提时拉力肯定大于物体重力一半.所以A错B对,当两绳间夹角等于1200时拉力等于物体重量,所以D对,当夹角大于1200时,拉力大于物体重量,所以c对.

说明:力是矢量,它的加减不是简单的代数加减;不共线的两个共点力与它们的合力构成三角形,利用正、余弦定理,三角形几何知识来分析相关问题,直观简捷!

[例3] A的质量是mAB始终相对静止,共同沿水平面向右运动。当a1=0时和a2=0.75g时,BA的作用力FB各多大?                      

解:一定要审清题:BA作用力FBBA支持力和摩擦力的合力。而A所受重力G=mgFB的合力是F=ma

   a1=0时,G FB二力平衡,所以FB大小为mg,方向竖直向上。

   当a2=0.75g时,用平行四边形定则作图:先画出重力(包括大小和方向),再画出A所受合力F的大小和方向,再根据平行四边形定则画出FB。由已知可得FB的大小FB=1.25mg,方向与竖直方向成37o角斜向右上方。

2、 用图象法求合力与分力

[例4]设有五个力同时作用在质点P,它们的大小和方向相当于正六边形的两条边和三条对角线,如图所示,这五个力中的最小力的大小为F,则这五个力的合力等于( )

 A、3F  B、4F  C、5F  D、6F

解析:由正六边形的特点可知,当最小的力为F时,最大的力为2F,不难推出F1与F4合力大小为F3,即2F,方向也与F3相同,F2与F5的合力大小为F3,即2F,方向也与F3相同,故最后合力为6F。用力的三角形法则也可得出同样的结论。

试题详情

2、  按问题的需要进行分解

具体问题的条件有:

①已确定两个分力的大小,可求得分力的方向。

②已确定两个分力的方向,可求得分力的大小。

③已确定一个分力的大小和方向,可求得另上个分力的大小和方向。

④已确定一个分力的大小和另一个分力的方向,可求得一个分力的大小和另一个分力的方向。

试题详情

力的分解是力的合成的逆运算,同样遵守平行四边形法则,两个分力的合力是唯一确定的,而一个已知力可以分解为大小、方向不同的分力,即一个力的两个分力不是唯一的,要确定一个力的两个分力,应根据具体条件进行。

1、  按力产生的效果进行分解

试题详情

2、运算法则:

(1)平行四边形法则:求两个互成角度的共点力F1,F2的合力,可以把F1,F2的线段作为邻边作平行四边形,它的对角线即表示合力的大小和方向;

(2)三角形法则:求两个互成角度的共点力F1,F2的合力,可以把F1,F2首尾相接地画出来,把F1,F2的另外两端连接起来,则此连线就表示合力F的大小和方向;

(3)共点的两个力F1,F2的合力F的大小,与它们的夹角θ有关,θ越大,合力越小;θ越小,合力越大,合力可能比分力大,也可能比分力小,F1与F2同向时合力最大,F1与F2反向时合力最小,合力大小的取值范围是   | F1-F2|≤F≤(F1+F2)

(4)三个力或三个以上的力的合力范围在一定的条件下可以是:0≤F≤| F1+F2+…Fn|

试题详情

1、求几个力的合力叫力的合成,求一个力的分力叫力的分解.

试题详情

2、合力与它的分力是力的效果上的一种等效替代关系。

试题详情

1、一个力如果它产生的效果跟几个力共同作用所产生的效果相同,这个力就叫做那几个力的合力,那几个力就叫做这个力的分力.

试题详情


同步练习册答案