6.(2006四川15)如图把椭圆的长轴AB分成8份,过每个分点作x轴的垂线交椭圆的上半部分于,,……七个点,F是椭圆的一个焦点,则____________.
简答提示:1-4.CBBA;
5.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是,则这个椭圆方程为__________________.
4.设F1、F2为椭圆的两个焦点,以F2为圆心作圆F2,已知圆F2经过椭圆的中心,且与椭圆相交于M点,若直线MF1恰与圆F2相切,则该椭圆的离心率e为 ( )
A. -1 B.2- C. D.
3. (2006山东)在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心离为 ( )
A. B. C. D.
2.(2005广东) 若焦点在轴上的椭圆的离心率为,则m=( )
A. B. C. D.
1.(2006全国Ⅱ)已知△ABC的顶点B、C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是 ( )
A. B.6 C. D.12
6.有关圆锥曲线弦的中点和斜率问题可利用“点差法”及结论:
设椭圆:上弦AB的中点为M(x0,y0),则斜率kAB=,
对椭圆:, 则kAB=.
5.对椭圆方程作三角换元即得椭圆的参数方程:
;注意θ不是∠xOP(x,y).
4.椭圆方程中的a,b,c,e与坐标系无关,是椭圆本身所固有的,决定椭圆形状的参数,而焦点坐标,准线方程,顶点坐标,与坐标系有关.
3.性质:对于椭圆:(a>b>0)如下性质必须熟练掌握:
①范围; ②对称轴,对称中心; ③顶点;
④焦点; ⑤准线方程; ⑥离心率; (参见课本)
此外还有如下常用性质:
⑦焦半径公式: |PF1|==a+ex0,|PF2|==a-ex0;(由第二定义推得)
⑧焦准距;准线间距;通径长;
⑨最大角
证:设|PF1|=r1,|PF2|=r2,则
对于椭圆:(a>b>0)的性质可类似的给出(请课后完成)。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com