10.已知圆C1:x2+y2+2x+2y-8=0与圆C2:x2+y2-2x+10y-24=0相交于A、B两点,
(1)求公共弦AB所在的直线方程;
(2)求圆心在直线y=-x上,且经过A、B两点的圆的方程.
解:(1)⇒x-2y+4=0.
(2)由(1)得x=2y-4,代入x2+y2+2x+2y-8=0中得:y2-2y=0.
∴或,即A(-4,0),B(0,2),
又圆心在直线y=-x上,设圆心为M(x,-x),则|MA|=|MB|,解得M(-3,3),∴⊙M:(x+3)2+(y-3)2=10.
9.(2009年高考江西卷)设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),对于下列四个命题:
A.存在一个圆与所有直线相交
B.存在一个圆与所有直线不相交
C.存在一个圆与所有直线相切
D.M中的直线所能围成的正三角形面积都相等
其中真命题的代号是________(写出所有真命题的代号).
解析:xcosθ+ysinθ-2sinθ-1=0.则点(0,2)到其直线的距离为
d==1.
∴说明此直线是圆心为(0,2),半径为1的圆的切线.
圆心为(0,2),半径大于等于1的圆与所有直线相交,A对;
圆心为(0,2),半径小于1的圆与所有直线不相交,B对;
圆心为(0,2),半径等于1的圆与所有直线都相切,C对;
因为M中的直线与以(0,2)为圆心,半径为1的圆相切,所以M中的直线所能围成的正三角形面积不都相等.如图△ABC与△ADE均为等边三角形而面积不等.答案:A、B、C
8.设圆O:x2+y2=,直线l:x+3y-8=0,点A∈l,使得圆O上存在点B,且∠OAB=30°(O为坐标原点),则点A的横坐标的取值范围是________.
解析:依题意点A∈l,设A(x0,).过点A作圆O的切线,切点为M,
则∠OAM≥∠OAB=30°.从而sin∠OAM≥sin30°=,即≥sin30°=,就是|OA|2≤4(|OM|2)=,x02+()2≤,5x02-8x0≤0,解得x0∈[0,].
答案:[0,]
7.(2010年宁波调研)已知圆C:x2+y2+bx+ay-3=0(a、b为正实数)上任意一点关于直线l:x+y+2=0的对称点都在圆C上,则+的最小值为________.
解析:由题意,知圆心在直线上,所以-+(-)+2=0,
∴+=1,则(+)(+)=1++≥1+2 =1+.
6.(2009年高考全国卷Ⅱ)已知AC、BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,),则四边形ABCD的面积的最大值为________.
解析:设圆心O到AC、BD的距离分别为d1、d2,则d12+d22=OM2=3.
四边形ABCD的面积S=|AB|·|CD|=2≤8-(d12+d22)=5.
5.若集合A={(x,y)|y=1+},B={(x,y)|y=k(x-2)+4}.当集合A∩B有4个子集时,实数k的取值范围是________________.
解析:A∩B有4个子集,即A∩B有2个元素,∴半圆x2+(y-1)2=4(y≥1)与过P(2,4)点,斜率为k的直线有两个交点,如图:A(-2,1),kPA=,过P与半圆相切时,k=,∴<k≤.
答案:<k≤
4.过点A(11,2)作圆x2+y2+2x-4y-164=0的弦,其中弦长为整数的共有__条.
解析:方程化为(x+1)2+(y-2)2=132,圆心为(-1,2),到点A(11,2)的距离为12,最短弦长为10,最长弦长为26,所以所求直线条数为2+2×(25-10)=32(条).答案:32
3.已知向量a=(cosα,sinα),b=(cosβ,sinβ),a与b的夹角为60°,直线xcosα+ysinα=0与圆(x+cosβ)2+(y+sinβ)2=的位置关系是________.
解析:cos60°=cosα·cosβ+sinα·sinβ=cos(α-β),
d==|cos(α-β)|=>=r.答案:相离
2.(2010年秦州质检)已知直线y=-x与圆x2+y2=2相交于A、B两点,P是优弧AB上任意一点,则∠APB=____________.
解析:弦心距长为,半径为,所以弦AB所对的圆心角为,又因为同弦所对的圆周角是圆心角的一半,所以∠APB=.答案:
1.直线ax+by+b-a=0与圆x2+y2-x-3=0的位置关系是________.
解析:直线方程化为a(x-1)+b(y+1)=0,过定点(1,-1),代入圆的方程,左侧小于0,则定点在圆内,所以直线与圆总相交.答案:相交
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com