0  407895  407903  407909  407913  407919  407921  407925  407931  407933  407939  407945  407949  407951  407955  407961  407963  407969  407973  407975  407979  407981  407985  407987  407989  407990  407991  407993  407994  407995  407997  407999  408003  408005  408009  408011  408015  408021  408023  408029  408033  408035  408039  408045  408051  408053  408059  408063  408065  408071  408075  408081  408089  447090 

3.连带运动问题

   指物拉绳(杆)或绳(杆)拉物问题。由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相同求解。

例6. 如图所示,汽车甲以速度v1拉汽车乙前进,乙的速度为v2,甲、乙都在水平面上运动,求v1v2

解:甲、乙沿绳的速度分别为v1v2cosα,两者应该相等,所以有v1v2=cosα∶1

例7. 两根光滑的杆互相垂直地固定在一起。上面分别穿有一个小球。小球ab间用一细直棒相连如图。当细直棒与竖直杆夹角为α时,求两小球实际速度之比vavb

解:ab沿杆的分速度分别为vacosαvbsinα

vavb= tanα∶1

试题详情

2.过河问题

   如右图所示,若用v1表示水速,v2表示船速,则:

过河时间仅由v2的垂直于岸的分量v决定,即v1无关,所以当v2⊥岸时,过河所用时间最短,最短时间为也与v1无关。

②过河路程由实际运动轨迹的方向决定,v1v2时,最短路程为d ;当v1v2时,最短路程程为(如右图所示)。

试题详情

1.运动的性质和轨迹

   物体运动的性质由加速度决定(加速度得零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动)。

   物体运动的轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决定(速度与加速度方向在同一条直线上时物体做直线运动;速度和加速度方向成角度时物体做曲线运动)。

   两个互成角度的直线运动的合运动是直线运动还是曲线运动?

决定于它们的合速度和合加速度方向是否共线(如图所示)。  

   常见的类型有:

a=0:匀速直线运动或静止。

a恒定:性质为匀变速运动,分为:① va同向,匀加速直线运动;②va反向,匀减速直线运动;③va成角度,匀变速曲线运动(轨迹在va之间,和速度v的方向相切,方向逐渐向a的方向接近,但不可能达到。)

a变化:性质为变加速运动。如简谐运动,加速度大小、方向都随时间变化。

试题详情

2.v-t图象。能读出s、t、v、a的信息(斜率表示加速度,曲线下的面积表示位移)。可见v-t图象提供的信息最多,应用也最广

例4. 一个固定在水平面上的光滑物块,其左侧面是斜面AB,右侧面是曲面AC。已知ABAC的长度相同。两个小球pq同时从A点分别沿ABAC由静止开始下滑,

比较它们到达水平面所用的时间

  A.p小球先到   B.q小球先到   C.两小球同时到   D.无法确定

解:可以利用v-t图象(这里的v是速率,曲线下的面积表示路程s)定性地进行比较。在同一个v-t图象中做出pq的速率图线,显然开始时q的加速度较大,斜率较大;由于机械能守恒,末速率相同,即曲线末端在同一水平图线上。为使路程相同(曲线和横轴所围的面积相同),显然q用的时间较少。

例5. 两支完全相同的光滑直角弯管(如图所示)现有两只相同小球aa/ 同时从管口由静止滑下,问谁先从下端的出口掉出?(假设通过拐角处时无机械能损失)   

解:首先由机械能守恒可以确定拐角处v1> v2,而两小球到达出口时的速率v相等。又由题薏可知两球经历的总路程s相等。由牛顿第二定律,小球的加速度大小a=gsinα,小球a第一阶段的加速度跟小球a/第二阶段的加速度大小相同(设为a1);小球a第二阶段的加速度跟小球a/第一阶段的加速度大小相同(设为a2),根据图中管的倾斜程度,显然有a1> a2。根据这些物理量大小的分析,在同一个v-t图象中两球速度曲线下所围的面积应该相同,且末状态速度大小也相同(纵坐标相同)。开始时a球曲线的斜率大。由于两球两阶段加速度对应相等,如果同时到达(经历时间为t1)则必然有s1>s2,显然不合理。考虑到两球末速度大小相等(图中vm),a/ 的速度图象只能如蓝线所示。因此有t1< t2,即a球先到。

试题详情

1.s-t图象。能读出stv 的信息(斜率表示速度)。

试题详情

5.一种典型的运动

经常会遇到这样的问题:物体由静止开始先做匀加速直线运动,紧接着又做匀减速直线运动到静止。用右图描述该过程,可以得出以下结论:

  ②

例1. 两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木块每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知

A.在时刻t2以及时刻t5两木块速度相同

B.在时刻t1两木块速度相同

C.在时刻t3和时刻t4之间某瞬间两木块速度相同

D.在时刻t4和时刻t5之间某瞬时两木块速度相同

解:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体明显地是做匀速运动。由于t2t5时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t3t4之间,因此本题选C。

例2. 在与x轴平行的匀强电场中,一带电量q=1.0×10-8C、质量m=2.5×10-3kg的物体在光滑水平面上沿着x轴作直线运动,其位移与时间的关系是x=0.16t-0.02t2,式中x以m为单位,t以s为单位。从开始运动到5s末物体所经过的路程为     m,克服电场力所做的功为     J。

解:须注意:本题第一问要求的是路程;第二问求功,要用到的是位移

x=0.16t-0.02t2对照,可知该物体的初速度v0=0.16m/s,加速度大小a=0.04m/s2,方向跟速度方向相反。由v0=at可知在4s末物体速度减小到零,然后反向做匀加速运动,末速度大小v5=0.04m/s。前4s内位移大小,第5s内位移大小,因此从开始运动到5s末物体所经过的路程为0.34m,而位移大小为0.30m,克服电场力做的功W=mas5=3×10-5J。

例3. 物体在恒力F1作用下,从A点由静止开始运动,经时间t到达B点。这时突然撤去F1,改为恒力F2作用,又经过时间2t物体回到A点。求F1F2大小之比。

解:设物体到B点和返回A点时的速率分别为vAvB, 利用平均速度公式可以得到vAvB的关系。再利用加速度定义式,可以得到加速度大小之比,从而得到F1F2大小之比。

   画出示意图如右。设加速度大小分别为a1a2,有:

 

   ∴a1a2=4∶5,∴F1F2=4∶5

   特别要注意速度的方向性。平均速度公式和加速度定义式中的速度都是矢量,要考虑方向。本题中以返回A点时的速度方向为正,因此AB段的末速度为负。

试题详情

4.初速为零的匀变速直线运动

①前1秒、前2秒、前3秒……内的位移之比为1∶4∶9∶……

②第1秒、第2秒、第3秒……内的位移之比为1∶3∶5∶……

③前1米、前2米、前3米……所用的时间之比为1∶∶……

④第1米、第2米、第3米……所用的时间之比为1∶∶()∶……

对末速为零的匀变速直线运动,可以相应的运用这些规律。

试题详情

3.初速度为零(或末速度为零)的匀变速直线运动

做匀变速直线运动的物体,如果初速度为零,或者末速度为零,那么公式都可简化为: 

    ,   ,   , 

以上各式都是单项式,因此可以方便地找到各物理量间的比例关系

试题详情

2.匀变速直线运动中几个常用的结论

Δs=aT 2,即任意相邻相等时间内的位移之差相等。可以推广到sm-sn=(m-n)aT 2

,某段时间的中间时刻的即时速度等于该段时间内的平均速度

  ,某段位移的中间位置的即时速度公式(不等于该段位移内的平均速度)。

可以证明,无论匀加速还是匀减速,都有

试题详情

1.常用公式有以下四个

             

⑴以上四个公式中共有五个物理量:s、t、a、v0vt,这五个物理量中只有三个是独立的,可以任意选定。只要其中三个物理量确定之后,另外两个就唯一确定了。每个公式中只有其中的四个物理量,当已知某三个而要求另一个时,往往选定一个公式就可以了。如果两个匀变速直线运动有三个物理量对应相等,那么另外的两个物理量也一定对应相等

⑵以上五个物理量中,除时间t外,s、v0vta均为矢量。一般以v0的方向为正方向,以t=0时刻的位移为零,这时svta的正负就都有了确定的物理意义。

试题详情


同步练习册答案