7.如图,已知三棱柱A1B1C1-ABC的底面是边长为2的正三角形,侧棱A1A与AB、AC均成45°角,且A1E⊥B1B于E,A1F⊥CC1于F.
(1)求点A到平面B1BCC1的距离;
(2)当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等.
§6.5空间几何体及投影
6.如图:二面角α--β为锐角,P为二面角内一点,P到α的 距离为,到面β的距离为4,到棱的距离为,求二面角α- -β的大小.
5.ABCD是边长为4的正方形,CG⊥面ABCD,CG = 2.E、F分别是AD、AB的中点.求点B到面EFG的距离.
4.二面角--内一点P,分别作两个面的垂线PA、PB,A、B为垂足.已知PA=3,PB=2,∠APB=60°求--的大小及P到的距离.
3.在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是AB和AD的中点,则点A1到平面EFB1D1的距离为
2.异面直线a , b所成的角为,过空间一定点P,作直线,使与a ,b 所成的角均为,这样的直线有 条.
1.在平面角为600的二面角内有一点P,P到α、β的距离分别为PC=2cm,PD=3cm,则P到棱的距离为____________.
[例1] 平面外有两点A,B,它们与平面的距离分别为a,b,线段AB上有一点P,且AP:PB=m:n,则点P到平面的距离为_________________.
错解:.
错因:只考虑AB在平面同侧的情形,忽略AB在平面两测的情况.
正解: .
[例2]与空间四边形ABCD四个顶点距离相等的平面共有______个.
错解:4个.
错因:只分1个点与3个点在平面两侧.没有考虑2个点与2个点在平面两侧.
正解:7个.
[例3]一个盛满水的三棱锥形容器,不久发现三条侧棱上各有一个小洞D、E、F,且知SD:DA=SE:EB=CF:FS=2:1,若仍用这个容器盛水,则最多可盛原来水的( )
A. B. C. D.
错解:A、B、C.由过D或E作面ABC的平行面,所截体计算而得.
正解:D.
当平面EFD处于水平位置时,容器盛水最多
最多可盛原来水得1-
[例4]斜三棱柱ABC-A1B1C1的底面是边长为a的正三角形,侧棱长等于b,一条侧棱AA1与底面相邻两边AB、AC都成450角,求这个三棱柱的侧面积.
错解:一是不给出任何证明,直接计算得结果;二是作直截面的方法不当,即“过BC作平面与AA1垂直于M”;三是由条件“∠A1AB=∠A1AC∠AA1在底面ABC上的射影是∠BAC的平分线”不给出论证.
正解:过点B作BM⊥AA1于M,连结CM,在△ABM和△ACM中,∵AB=AC,∠MAB=∠MAC=450,MA为公共边,∴△ABM≌△ACM,∴∠AMC=∠AMB=900,∴AA1⊥面BHC,即平面BMC为直截面,又BM=CM=ABsin450=a,∴BMC周长为2xa+a=(1+)a,且棱长为b,∴S侧=(1+)ab
[例5]已知CA⊥平面α,垂足为A;AB α,BD⊥AB,且BD与α成30°角;AC=BD=b,AB=a.求C,D两点间的距离.
解 : 本题应分两种情况讨论:
(1)如下左图.C,D在α同侧:过D作DF⊥α,垂足为F.连BF,则于是.
根据三垂线定理BD⊥AB得BF⊥AB.
在Rt△ABF中,AF=
过D作DEAC于E,则DE=AF,AE=DF=.所以EC=AC-AE= b-=.故
CD=
(2)如上右图.C,D在α两侧时:同法可求得CD=
点 评: 本题是通过把已知量与未知量归结到一个直角三角形中,应用勾股定理来求解.
[例6]如图,在棱长为1的正方体中,是侧棱上的一点,.
(1)试确定,使得直线与平面所成角的正切值为;
(2)在线段上是否存在一个定点,使得对任意的,在平面上的射影垂直于.
并证明你的结论.
解:解法一(1)连AC,设AC与BD相交于点O,AP与平面相交于点,,连结OG,因为
PC∥平面,平面∩平面APC=OG,
故OG∥PC,所以,OG=PC=.
又AO⊥BD,AO⊥BB1,所以AO⊥平面,
故∠AGO是AP与平面所成的角.
在Rt△AOG中,tanAGO=,即m=.
所以,当m=时,直线AP与平面所成的角的正切值为.
(2)可以推测,点Q应当是AICI的中点O1,因为
D1O1⊥A1C1, 且 D1O1⊥A1A ,所以 D1O1⊥平面ACC1A1,
又AP平面ACC1A1,故 D1O1⊥AP.
那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直。
解法二:(1)建立如图所示的空间直角坐标系,则A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),B1(1,1,1),D1(0,0,1)
所以
又由知,为平面的一个法向量。
设AP与平面所成的角为,则。依题意有解得。故当时,直线AP与平面所成的角的正切值为。
(2)若在A1C1上存在这样的点Q,设此点的横坐标为,则Q(x,1-,1),。依题意,对任意的m要使D1Q在平面APD1上的射影垂直于AP,等价于D1Q⊥AP即Q为A1C1的中点时,满足题设要求。
[例7]在梯形ABCD中,∠ADC=90°,AB∥DC,AB=1,DC=2,,P为平面ABCD外一点,PAD是正三角形,且PA⊥AB,
求:(1)平面PBC和平面PAD所成二面角的大小;
(2)D点到平面PBC的距离.
解: (1)设AD∩BC=E,可知PE是平面PBC和平面PAD的交线,依题设条件得PA=AD=AE,则∠EPD=90°,PD⊥PE
又PA⊥AB,DA⊥AB,故AB⊥平面PAD.
∵ DC∥AB,∴ DC⊥平面PAD.
由PE⊥PC得PE⊥PD,∠DPC是平面PBC与平面PAD所成二面角的平面角.,DC=2,tan,.
(2)由于PE⊥PD,PE⊥PC,故PE⊥平面PDC,
因此平面PDC⊥平面PBC,
作DH⊥PC,H是垂足,则DH是D到平面PBC的距离.
在Rt△PDC中,,DC=2,,.
平面PBC与平面PAD成二面角的大小为arctan,D到平面PBC的距离为.
[例8] 半径为1的球面上有A、B、C三点,A与B和A与C的球面距离都是,B与C的球面距离是,求过A、B、C三点的截面到球心O距离.
分析 : 转化为以球心O为顶点,△ABC为底面的三棱锥问题解决.
由题设知△OBC是边长为1的正三角形,△AOB和△AOC是腰长为1的全等的等腰三角形.
取BC中点D,连AD、OD,易得BC⊥面AOD,进而得面AOD⊥面ABC,过O作OH⊥AD于H,则OH⊥面ABC,OH的长即为
所求,在Rt中,AD=,故在Rt,OH=
点评: 本题若注意到H是△ABC的外心,可通过解△ABC和△AHO得OH.或利用体积法.
5.要注意距离和角在空间求值中的相互作用,以及在求面积和体积中的作用.
4.球面上两点间的距离是指经过这两点的球的大圆的劣弧的长,关键在于画出经过两点的大圆以及小圆.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com