2.下列n的取值中,使in =1(i是虚数单位)的是
A.n=2 B.n=3 C.n=4 D.n=5
1.已知全集U=R,则正确表示集合M={-1,0,1}和N={}关系的韦恩(Venn)图是
21.(本小题满分14分)
已知二次函数的导函数的图像与直线平行,且在=-1处取得最小值m-1(m).设函数
(1)若曲线上的点P到点Q(0,2)的距离的最小值为,求m的值
(2) 如何取值时,函数存在零点,并求出零点.
[解析](1)设,则;
又的图像与直线平行
又在取极小值, ,
, ;
, 设
则
;
(2)由,
得
当时,方程有一解,函数有一零点;
当时,方程有二解,若,,
函数有两个零点;若,
,函数有两个零点;
当时,方程有一解, , 函数有一零点
20.(本小题满分14分)
已知点(1,)是函数且)的图象上一点,等比数列的前n项和为,数列的首项为c,且前n项和满足-=+(n2).
(1)求数列和的通项公式;
(2)若数列{前n项和为,问>的最小正整数n是多少?
[解析](1),
,,
.
又数列成等比数列, ,所以 ;
又公比,所以 ;
又,, ;
数列构成一个首相为1公差为1的等差数列, ,
当, ;
();
(2)
;
由得,满足的最小正整数为112.
19.(本小题满分14分)
已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12.圆:的圆心为点.
(1)求椭圆G的方程
(2)求的面积
(3)问是否存在圆包围椭圆G?请说明理由.
[解析](1)设椭圆G的方程为: ()半焦距为c;
则 , 解得 ,
所求椭圆G的方程为:.
(2 )点的坐标为
(3)若,由可知点(6,0)在圆外,
若,由可知点(-6,0)在圆外;
不论K为何值圆都不能包围椭圆G.
18.(本小题满分13分)
随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.
[解析](1)由茎叶图可知:甲班身高集中于之间,而乙班身高集中于 之间。因此乙班平均身高高于甲班;
(2)
甲班的样本方差为
=57
(3)设身高为176cm的同学被抽中的事件为A;
从乙班10名同学中抽中两名身高不低于173cm的同学有:(181,173) (181,176)
(181,178) (181,179) (179,173) (179,176) (179,178) (178,173)
(178, 176) (176,173)共10个基本事件,而事件A含有4个基本事件;
;
17.(本小题满分13分)
某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图.
(1)请画出该安全标识墩的侧(左)视图;
(2)求该安全标识墩的体积
(3)证明:直线BD平面PEG
[解析](1)侧视图同正视图,如下图所示.
(2)该安全标识墩的体积为:
(3)如图,连结EG,HF及 BD,EG与HF相交于O,连结PO.
由正四棱锥的性质可知,平面EFGH ,
又 平面PEG
又 平面PEG;
16.(本小题满分12分)
已知向量与互相垂直,其中
(1)求和的值
(2)若,,求的值
[解析](1),,即
又∵, ∴,即,∴
又 ,
(2) ∵
, ,即
又 , ∴
(二)选做题(14、15题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)若直线(t为参数)与直线垂直,则常数= .
[答案]
[解析]将化为普通方程为,斜率,
当时,直线的斜率,由得;
当时,直线与直线不垂直.
综上可知,.
15.(几何证明选讲选做题)如图3,点A、B、C是圆O上的点,且AB=4,,则圆O的面积等于 .
图3
[答案]
[解析]连结AO,OB,因为 ,所以,为等边三角形,故圆O的半径,圆O的面积.
(一)必做题(11-13题)
11.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:
队员i |
1 |
2 |
3 |
4 |
5 |
6 |
三分球个数 |
|
|
|
|
|
|
图1是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填 ,输出的s=
(注:框图中的赋值符号“=”也可以写成“←”或“:=”)
图1
[答案],
[解析]顺为是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,所图中判断框应填,输出的s=.
12.某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。若用分层抽样方法,则40岁以下年龄段应抽取 人.
图 2
[答案]37, 20
[解析]由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.
40岁以下年龄段的职工数为,则应抽取的人数为人.
13.以点(2,)为圆心且与直线相切的圆的方程是 .
[答案]
[解析]将直线化为,圆的半径,所以圆的方程为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com