2.若曲线的一条切线与直线垂直,则的方程为( )
A. B. C. D.
1.求下列函数导数
(1) (2) (3)
(4)y= (5)y=
4.定积分
(1)概念:设函数f(x)在区间[a,b]上连续,用分点a=x0<x1<…<xi-1<xi<…xn=b把区间[a,b]等分成n个小区间,在每个小区间[xi-1,xi]上取任一点ξi(i=1,2,…n)作和式In=(ξi)△x(其中△x为小区间长度),把n→∞即△x→0时,和式In的极限叫做函数f(x)在区间[a,b]上的定积分,记作:,即=(ξi)△x。
这里,a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。
基本的积分公式:
=C;
=+C(m∈Q, m≠-1);
dx=ln+C;
=+C;
=+C;
=sinx+C;
=-cosx+C(表中C均为常数)。
(2)定积分的性质
①(k为常数);
②;
③(其中a<c<b。
(3)定积分求曲边梯形面积
由三条直线x=a,x=b(a<b),x轴及一条曲线y=f(x)(f(x)≥0)围成的曲边梯的面积。
如果图形由曲线y1=f1(x),y2=f2(x)(不妨设f1(x)≥f2(x)≥0),及直线x=a,x=b(a<b)围成,那么所求图形的面积S=S曲边梯形AMNB-S曲边梯形DMNC=。
课前预习
3.最值:
一般地,在区间[a,b]上连续的函数f在[a,b]上必有最大值与最小值。
①求函数ƒ在(a,b)内的极值;
②求函数ƒ在区间端点的值ƒ(a)、ƒ(b);
③将函数ƒ 的各极值与ƒ(a)、ƒ(b)比较,其中最大的是最大值,其中最小的是最小值。
2.极点与极值:
曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正;
1.单调区间:一般地,设函数在某个区间可导,
如果,则为增函数;
如果,则为减函数;
如果在某区间内恒有,则为常数;
4.两个函数的和、差、积的求导法则
法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),
即: (
法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个
函数乘以第二个函数的导数,即:
若C为常数,则.即常数与函数的积的导数等于常数乘以函数的导数:
法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:‘=(v0)。
形如y=f的函数称为复合函数。复合函数求导步骤:分解--求导--回代。法则:y'|= y'| ·u'|
10级高三数学总复习讲义--导数应用
知识清单
3.几种常见函数的导数:
① ② ③; ④;
⑤⑥; ⑦; ⑧.
2.导数的几何意义
函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x))处的切线的斜率。也就是说,曲线y=f(x)在点p(x,f(x))处的切线的斜率是f’(x)。相应地,切线方程为y-y=f/(x)(x-x)。
1.导数的概念
函数y=f(x),如果自变量x在x处有增量,那么函数y相应地有增量=f(x+)-f(x),比值叫做函数y=f(x)在x到x+之间的平均变化率,即=。如果当时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f’(x)或y’|。
即f(x)==。
说明:
(1)函数f(x)在点x处可导,是指时,有极限。如果不存在极限,就说函数在点x处不可导,或说无导数。
(2)是自变量x在x处的改变量,时,而是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f(x)在点x处的导数的步骤(可由学生来归纳):
(1)求函数的增量=f(x+)-f(x);
(2)求平均变化率=;
(3)取极限,得导数f’(x)=。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com