0  409232  409240  409246  409250  409256  409258  409262  409268  409270  409276  409282  409286  409288  409292  409298  409300  409306  409310  409312  409316  409318  409322  409324  409326  409327  409328  409330  409331  409332  409334  409336  409340  409342  409346  409348  409352  409358  409360  409366  409370  409372  409376  409382  409388  409390  409396  409400  409402  409408  409412  409418  409426  447090 

2.(07江苏)已知二次函数的导数为,对于任意实数都有,则的最小值为    

试题详情

1.(07海南)曲线在点处的切线与坐标轴所围三角形的面积为  

试题详情

7.(07湖南)函数在区间上的最小值是       

实战训练B

试题详情

6.(07湖北)已知函数的图象在点处的切线方程是,则        

试题详情

5. 设函数f (x)=x3+ax2+bx-1,若当x=1时,有极值为1,则函数g(x)=x3+ax2+bx的单调递减区间为      . 

试题详情

4.设l1为曲线y1=sinx在点(0,0)处的切线,l2为曲线y2=cosx在点(,0)处的切线,则l1l2的夹角为___________.

试题详情

3. 函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值、最小值分别是    

试题详情

2. y=2x3-3x2+a的极大值为6,那么a等于      

试题详情

1. 已知曲线S:y=3xx3及点,则过点P可向S引切线的条数为  

试题详情

5.在区间上的最大值是    

典型例题

一 导数的概念与运算

例1:如果质点A按规律s=2t3运动,则在t=3 s时的瞬时速度为    

变式:定义在D上的函数,如果满足:常数

都有≤M成立,则称是D上的有界函数,其中M称为函数的上界.

(1)若已知质点的运动方程为,要使在上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a的取值范围.

例:求所给函数的导数:

变式:设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,>0.且g(3)=0.则不等式f(x)g(x)<0的解集是       

例2:已知函数.(1)求这个函数的导数;(2)求这个函数在点处的切线的方程.

变式1:已知函数.

(1)求这个函数在点处的切线的方程;

(2)过原点作曲线yex的切线,求切线的方程.

变式2:函数yax2+1的图象与直线yx相切,则a 

例3:判断下列函数的单调性,并求出单调区间:

变式1:函数的一个单调递增区间是

变式2:已知函数

(1)若函数的单调递减区间是(-3,1),则的是                   .

(2)若函数在上是单调增函数,则的取值范围是                .

例4:求函数的极值.

求函数上的最大值与最小值..

变式1:已知函数在点处取得极大值,其导函数的图象经过点,如图所示.求:

(Ⅰ)的值;(Ⅱ)的值.

变式2:若函数,当时,函数极值

(1)求函数的解析式;

(2)若函数有3个解,求实数的取值范围.

变式3:已知函数,对xÎ(-1,2),不等式f(x)<c2恒成立,求c的取值范围。

实战训练

试题详情


同步练习册答案