1.速度选择器
正交的匀强磁场和匀强电场组成速度选择器。带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。否则将发生偏转。这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq,。在本图中,速度方向必须向右。
(1)这个结论与离子带何种电荷、电荷多少都无关。
(2)若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。
[例题19]某带电粒子从图中速度选择器左端由中点O以速度v0向右射去,从右端中心a下方的b点以速度v1射出;若增大磁感应强度B,该粒子将打到a点上方的c点,且有ac=ab,则该粒子带___电;第二次射出时的速度为_____。
解:B增大后向上偏,说明洛伦兹力向上,所以为带正电。由于洛伦兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对值相同。,故。
[例题20]如图所示,一个带电粒子两次以同样的垂直于场线的初速度v0分别穿越匀强电场区和匀强磁场区, 场区的宽度均为L偏转角度均为α,求E∶B
解:分别利用带电粒子的偏角公式。在电场中偏转:
,在磁场中偏转:,由以上两式可得。可以证明:当偏转角相同时,侧移必然不同(电场中侧移较大);当侧移相同时,偏转角必然不同(磁场中偏转角较大)。
2.仔细审题,挖掘隐含条件。
[例题18]在 M、 N两条长直导线所在的平面内,一带电粒子的运动轨迹,如图所示.已知两条导线M、N只有一条中有恒定电流,另一条导线中无电流,关于电流、电流方向和粒子带电情况及运动方向,可能是
A.M中通有自上而下的恒定电流,带正电的粒子从b点向a点运动
B.M中通有自上而下的恒定电流,带负电的粒子从a点向b点运动
C.N中通有自下而上的恒定电流,带正电的粒子从b点向a点运动
D.N中通有自下而上的恒定电流,带负电的粒子从a点向b点运动
让学生讨论得出结果。很多学生会选择所有选项,或对称选择A、D(或B、C)。前者是因为没有考虑直线电流在周围产生非匀强磁场,带电粒子在其中不做匀速圆周运动。后者是在选择过程中有很强的猜测成分。
分析:两根直线电流在周围空间产生的磁场为非匀强磁场,靠近导线处磁场强,远离导线处磁场弱。所以带电粒子在该磁场中不做匀速圆周运动,而是复杂曲线运动。因为带电粒子在运动中始终只受到洛仑兹力作用,所以可以定性使用圆运动半径规律R=mv/ Bq。由该规律知,磁场越强处,曲率半径越小,曲线越弯曲;反之,曲线弯曲程度越小。
解:选项A、B正确。
小结:这是一道带电粒子在非匀强磁场中运动的问题,这时粒子做复杂曲线运动,不再是匀速圆周运动。但在定性解决这类问题时可使用前面所分析的半径公式。洛仑兹力永远不做功仍成立。
1.洛仑兹力永远不做功,因此磁场中带电粒子的动能不变。
3.画出轨迹草图并计算。
分析:带电粒子在两磁场中做半径不同的匀速圆周运动,但因为洛仑兹力永远不做功,所以带电粒子运动速率不变.粒子恰好不能通过两磁场的临界条件是粒子到达边界P时,其速度方向平行于边界面。粒子在磁场中轨迹如图所示。再利用平面几何和圆运动规律即可求解。
解:如图所示,设O1、O2分别为带电粒子在磁场B1和B2中运动轨迹的圆心。则
在磁场B1中运动的半径为
在磁场B2中运动的半径为
设角α、β分别为粒子在磁场B1和B2中运动轨迹所对应圆心角,则由几何关系知
,,且α+β=90°
所以
若粒子能通过两磁场区,则
小结:
2.什么是粒子运动通过磁场或不通过磁场的临界条件?
1.该粒子在两磁场中运动速率是否相同?
3.讨论粒子速度方向发生变化后,粒子运动轨迹及速度偏转角的比。
分析:(1)圆运动半径可直接代入公式求解。
(2)先在圆中画出任意一速度方偏转角为初速度与未速度的夹角,且偏转角等于粒子运动轨迹所对应的圆心角。向入射时,其偏转角为哪个角?如图所示。由图分析知:弦ac是粒子轨迹上的弦,也是圆形磁场的弦。
因此,弦长的变化一定对应速度偏转角的变化,也一定对应粒子圆运动轨迹的圆心角的变化。所以当弦长为圆形磁场直径时,偏转角最大。
解:(1)设粒子圆运动半径为R,则
(2)由图知:弦长最大值为ab=2r=6×10-2m
设速度偏转角最大值为αm,此时初速度方向与ab连线夹角为θ,则
,故
当粒子以与ab夹角为37°斜向右上方入射时,粒子飞离磁场时有最大偏转角,其最大值为74°。
小结:本题所涉及的问题是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使得粒子运动轨迹的长短和位置均发生变化,要会灵活运用平面几何知识去解决.
计算机演示:(1)随粒子入射速度方向的变化,粒子飞离磁场时速度偏转角的变化。(2)随粒子入射速度方向的变化,粒子做匀速圆周运动的圆心的运动轨迹。其轨迹为以a点为圆心的一段圆弧。
[例题17]如图所示,很长的平行边界面M、N与N、P间距分别为L1、L2,其间分别有磁感应强度为B1与B2的匀强磁场区,磁场方向均垂直纸面向里.已知B1≠B2,一个带正电的粒子电量为q,质量为m,以大小为v0。的速度垂直边界面M与磁场方向射入MN间磁场区,试讨论粒子速度v0应满足什么条件,才能通过两个磁场区,并从边界面P射出?(不计粒子重力)
问题:
2.在图中画出粒子以图示速度方向入射时在磁场中运动的轨迹图,并找出速度的偏转角。
1.第一问由学生自己完成。
3.在xy平面内什么位置加一个圆形磁场可使带电质点按题意运动?其中有什么样特点的圆形磁场为半径最小的磁场?常见错误:
加以aM和bN连线交点为圆心的圆形磁场,其圆形磁场最小半径为R。
分析:带电质点在磁场中做匀速圆周运动,其半径为
因为带电质点在a、b两点速度方向垂直,所以带电质点在磁场中运动轨迹为1/4圆弧,O1为其圆心,如图所示MN圆弧。
在xy平面内加以MN连线为弦,且包含MN圆弧的所有圆形磁场均可使带电质点完成题意运动。其中以MN连线为半径的磁场为最小圆形磁场。
解:设圆形磁场的圆心为O2点,半径为r,则由图知:
因为,所以
小结:这是一个需要逆向思维的问题,同时考查了空间想象能力,即已知粒子运动轨迹,求所加圆形磁场的位置。考虑问题时,要抓住粒子运动特点,即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1/4圆弧必须包含在磁场区域中,且圆运动起点、终点必须是磁场边界上的点。然后再考虑磁场的最小半径。
[例题16]在真空中,半径为r=3×10-2m的圆形区域内,有一匀强磁场,磁场的磁感应强度为B=0.2T,方向如图所示,一带正电粒子,以初速度v0=106m/s的速度从磁场边界上直径ab一端a点处射入磁场,已知该粒子荷质比为q/m=108C/kg,不计粒子重力,则(1)粒子在磁场中匀速圆周运动的半径是多少?(2)若要使粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应如何(以v0与Oa的夹角θ表示)?最大偏转角多大?
问题:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com