18.(本小题满分12分)判断下列命题的真假.
(1)∀x∈R,都有x2-x+1>.
(2)∃α,β使cos(α-β)=cosα-cosβ.
(3)∀x,y∈N,都有x-y∈N.
(4)∃x0,y0∈Z,使得x0+y0=3.
解:(1)真命题,∵x2-x+1=(x-)2+≥>.
(2)真命题,如α=,β=,符合题意.
(3)假命题,例如x=1,y=5,但x-y=-4∉N.
(4)真命题,例如x0=0,y0=3符合题意.
17.(本小题满分12分)设集合A={-4,2a-1,a2},B={9,a-5,1-a},且A∩B={9},求实数a的值.
解:因为A∩B={9},所以9∈A.
若2a-1=9,则a=5,
此时A={-4,9,25},B={9,0,-4},A∩B={-4,9},与已知矛盾(舍去).
若a2=9,则a=±3.
当a=3时,A={-4,5,9},B={-2,-2,9},与集合中元素的互异性矛盾(舍去);
当a=-3时,A={-4,-7,9},B={-8,4,9},符合题意.
综上所述,a=-3.
16.(文)下列结论:
①若命题p:∃x∈R,tanx=1;命题q:∀x∈R,x2-x+1>0.则命题“p∧ q”是假命题;
②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=-3;
③命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”.其中正确结论的序号为 (把你认为正确结论的序号都填上).
解析:①中命题p为真命题,命题q为真命题,所以p∧ q为假命题,故①正确;
②当b=a=0时,有l1⊥l2,故②不正确;
③正确,所以正确结论的序号为①③.
答案:①③
(理)给出下列四个命题:①∃α>β,使得tanα<tanβ;
②若f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈(,),则f(sinθ)>f(cosθ);
③在△ABC中,“A>”是“sinA>”的充要条件;
④若函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=x+2,则f(1)+f′(1)=3.其中所有正确命题的序号是 .
解析:①存在α=>β=,使tan=tan<tan,①正确;
②f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,则在[0,1]上是减函数,θ∈(,),1>sinθ>cosθ>0,
∴f(sinθ)<f(cosθ),②错误;
③在△ABC中,A>,则0<sinA≤1.
sinA>,则>A>,所以“A>”是“sinA>”的既必要不充分条件,③错误;
④函数y=f(x)在点M(1,f(1))处的切线斜率为f′(1)=,M(1,f(1))是曲线上的点也是切线上的点,x=1时,f(1)=,∴f(1)+f′(1)=3,④正确.
答案:①④
15.已知集合A={x|-1≤x≤1},B={x|1-a≤x≤2a-1},若B⊇A,那么a的取值范围是 .
解析:由数轴知,
即
故a≥2.
答案:a≥2
14.已知m、n是不同的直线,α、β是不重合的平面.
命题p:若α∥β,m?α,n?β,则m∥n;
命题q:若m⊥α,n⊥β,m∥n,则α∥β;
下面的命题中,①p或q;②p且q;③p或 q;④ p且q.
真命题的序号是 (写出所有真命题的序号).
解析:∵命题p是假命题,命题q是真命题.
∴ p是真命题, q是假命题,
∴p或q是真命题,p且q是假命题,
p或 q是假命题, p且q是真命题.
答案:①④
13.令p(x):ax2+2x+1>0,若对∀x∈R,p(x)是真命题,则实数a的取值范围是 .
解析:对∀x∈R,p(x)是真命题,就是不等式ax2+2x+1>0对一切x∈R恒成立.
(1)若a=0,不等式化为2x+1>0,不能恒成立;
(2)若 解得a>1;
(3)若a<0,不等式显然不能恒成立.
综上所述,实数a的取值范围是a>1.
答案:a>1
12.(文)已知P={x|x2-4x+3≤0},Q={x|y=+},则“x∈P”是“x∈Q”的 ( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:解集合P中的不等式x2-4x+3≤0可得1≤x≤3,集合Q中的x满足, ,解之得-1≤x≤3,所以满足集合P的x均满足集合Q,反之,则不成立.
答案:A
(理)设集合A={x|<0},B={x|x2-4x<0},那么“m∈A”是“m∈B”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:∵A={x|0<x<1},B={x|0<x<4},
∴A?B,∴“m∈A”是“m∈B”的充分不必要条件.
答案:A
11.下列说法正确的是 ( )
A.函数y=2sin(2x-)的图象的一条对称轴是直线x=
B.若命题p:“存在x∈R,x2-x-1>0”,则命题p的否定为:“对任意x∈R, x2-x-1≤0”
C.若x≠0,则x+≥2
D.“a=1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件
解析:对于A,令2x-=kπ+,k∈Z,则x=+,k∈Z,即函数y=2sin(2x-)的对称轴集合为{x|x=+,k∈Z},x=不适合,故A错;对于B,特称命题的否定为全称
命题,故B正确;对于C,当x<0时,有x+≤-2;对于D,a=-1时,直线x-ay=0与直
线x+ay=0也互相垂直,故a=1是两直线互相垂直的充分而非必要条件.
答案:B
10.“a=1”是“函数f(x)=|x-a|在区间[1,+∞)上为增函数”的 ( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:当a=1时,函数f(x)=|x-1|在区间[1,+∞)上为增函数,而当函数f(x)=|x-a|在区间[1,+∞)上为增函数时,只要a≤1即可.
答案:A
9.(文)设A,B是非空集合,定义A×B={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤2},B={x|x≥0},则A×B等于 ( )
A.(2,+∞) B.[0,1]∪[2,+∞)
C.[0,1)∪(2,+∞) D.[0,1]∪(2,+∞)
解析:由题意知,A∪B=[0,+∞),A∩B=[0,2],所以A×B=(2,+∞).
答案:A
(理)定义一种集合运算A⊗B={x|x∈A∪B,且x∉A∩B},设M={x||x|<2},N={x|x2-4x+3<0},则M⊗N表示的集合是 ( )
A.(-∞,-2]∪[1,2)∪(3,+∞)
B.(-2,1]∪[2,3)
C.(-2,1)∪(2,3)
D.(-∞,-2]∪(3,+∞)
解析:M={x|-2<x<2},N={x|1<x<3},所以M∩N={x|1<x<2},M∪N={x|-2<x<3},故M⊗N=(-2,1]∪[2,3).
答案:B
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com