0  410750  410758  410764  410768  410774  410776  410780  410786  410788  410794  410800  410804  410806  410810  410816  410818  410824  410828  410830  410834  410836  410840  410842  410844  410845  410846  410848  410849  410850  410852  410854  410858  410860  410864  410866  410870  410876  410878  410884  410888  410890  410894  410900  410906  410908  410914  410918  410920  410926  410930  410936  410944  447090 

2.推理与证明

(1)合情推理

根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)。归纳是从特殊到一般的过程,它属于合情推理;

根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另一类事物类似(或相同)的性质的推理,叫做类比推理(简称类比)。

类比推理的一般步骤:

(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3)一般地,事物之间的各个性质之间并不是孤立存在的,而是相互制约的。如果两个事物在某些性质上相同或类似,那么它们在另一些性质上也可能相同或类似,类比的结论可能是真的;(4)在一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题就越可靠。

(2)演绎推理

分析上述推理过程,可以看出,推理的灭每一个步骤都是根据一般性命题(如“全等三角形”)推出特殊性命题的过程,这类根据一般性的真命题(或逻辑规则)导出特殊性命题为真的推理,叫做演绎推理。演绎推理的特征是:当前提为真时,结论必然为真。

(3)证明

反证法:要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法。

反证法的步骤:1)假设命题的结论不成立,即假设结论的反面成立;2)从这个假设出发,通过推理论证,得出矛盾;3)由矛盾判定假设不正确,从而肯定命题的结论正确。

注意:可能出现矛盾四种情况:①与题设矛盾;②与反设矛盾;③与公理、定理矛盾④在证明过程中,推出自相矛盾的结论。

分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。

用分析法证明不等式的逻辑关系是:

分析法的思维特点是:执果索因;

分析法的书写格式: 要证明命题B为真,只需要证明命题为真,

从而有……,这只需要证明命题为真,从而又有……

这只需要证明命题A为真,而已知A为真,故命题B必为真.

综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法,

用综合法证明不等式的逻辑关系是:

综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。

试题详情

1.常用逻辑用语

(1)命题

命题:可以判断真假的语句叫命题;

逻辑联结词:“或”“且”“非”这些词就叫做逻辑联结词;简单命题:不含逻辑联结词的命题。复合命题:由简单命题与逻辑联结词构成的命题。

常用小写的拉丁字母p,q,r,s,……表示命题,故复合命题有三种形式:p或q;p且q;非p。

(2)复合命题的真值

“非p”形式复合命题的真假可以用下表表示:   

p
非p




“p且q”形式复合命题的真假可以用下表表示:

p
q
p且q












“p且q”形式复合命题的真假可以用下表表示:

p
q
P或q












注:1°像上面表示命题真假的表叫真值表;2°由真值表得:“非p”形式复合命题的真假与p的真假相反;“p且q”形式复合命题当p与q同为真时为真,其他情况为假;“p或q”形式复合命题当p与q同为假时为假,其他情况为真;3°真值表是根据简单命题的真假,判断由这些简单命题构成的复合命题的真假,而不涉及简单命题的具体内容。

(3)四种命题

如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互为逆命题;

如果一个命题的条件和结论分别是原命题的条件和结论的否定,那么这两个命题叫做互否命题,这个命题叫做原命题的否命题;

如果一个命题的条件和结论分别是原命题的结论和条件的否定,那么这两个命题叫做互为逆否命题,这个命题叫做原命题的逆否命题。

两个互为逆否命题的真假是相同的,即两个互为逆否命题是等价命题.若判断一个命题的真假较困难时,可转化为判断其逆否命题的真假。

(4)条件

一般地,如果已知pÞq,那么就说:p是q的充分条件;q是p的必要条件。

可分为四类:(1)充分不必要条件,即pÞq,而qp;(2)必要不充分条件,即pq,而qÞp;(3)既充分又必要条件,即pÞq,又有qÞp;(4)既不充分也不必要条件,即pq,又有qp。

一般地,如果既有pÞq,又有qÞp,就记作:pq.“”叫做等价符号。pq表示pÞq且qÞp。

这时p既是q的充分条件,又是q的必要条件,则p是q的充分必要条件,简称充要条件。

(5)全称命题与特称命题

这里,短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。

短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。

试题详情

常用逻辑用语

本部分内容主要是常用的逻辑用语,包括命题与量词,基本逻辑联结词以及充分条件、必要条件与命题的四种形式。

预测2010年高考对本部分内容的考查形式如下:考查的形式以选择、填空题为主,考察的重点是条件和复合命题真值的判断。

推理证明

本部分内容主要包括:合情推理和演绎推理、直接证明与间接证明、数学归纳法(理科)等内容,其中推理中的合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势,选择题、填空题、解答题都可能涉及到,该部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,在新的高考中都会涉及和渗透,但单独出题的可能性较小;

预计2010年高考将会有较多题目用到推理证明的方法.

复数

复数部分考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大,预计今后的高考还会保持这个趋势。

预测2010年高考对本讲的试题难度不会太大,重视对基本问题诸如:复数的四则运算的考查,题目多以选择、填空为主。

框图

本部分是新课标新增内容,历年高考中涉及内容很少,估计2007年高考中可能在选择题、填空题中以考察流程图和结构图的定义和特征的形式出现;也可能以画某种知识的结构图或解决某类问题的流程图为形式的解答题出现,但不论哪种形式,所占份量都不会很大。

试题详情

4.框图

(1)流程图

①通过具体实例,进一步认识程序框图;

②通过具体实例,了解工序流程图(即统筹图);

③能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用;

(2)结构图

①通过实例,了解结构图;运用结构图梳理已学过的知识、整理收集到的资料信息;

②结合作出的结构图与他人进行交流,体会结构图在揭示事物联系中的作用。

试题详情

3.数系的扩充与复数的引入

(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;

(2)理解复数的基本概念以及复数相等的充要条件;

(3)了解复数的代数表示法及其几何意义;

(4)能进行复数代数形式的四则运算,了解复数代数形式的加减运算的几何意义。

试题详情

2.推理与证明

(1)合情推理与演绎推理

①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用;

②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;

③通过具体实例,了解合情推理和演绎推理之间的联系和差异.

(2)直接证明与间接证明

①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;

②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点;

(3)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题;

(4)数学文化

①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想;

②介绍计算机在自动推理领域和数学证明中的作用;

试题详情

1.常用逻辑用语

(1)命题及其关系

① 了解命题的逆命题、否命题与逆否命题;② 理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系;

(2)简单的逻辑联结词

通过数学实例,了解"或"、"且"、"非"逻辑联结词的含义.

(3)全称量词与存在量词

① 通过生活和数学中的丰富实例,理解全称量词与存在量词的意义;

② 能正确地对含有一个量词的命题进行否定.

试题详情

26.解:由s= cΔt=1.2×105m=120km。这是电磁波往返的路程,所以目标到雷达的距离为60km。由c= fλ可得λ= 0.1m

试题详情

25.解:电磁波的波长越长越容易发生明显衍射,波长越短衍射越不明显,表现出直线传播性。这时就需要在山顶建转发站。因此本题的转发站一定是转发电视信号的,因为其波长太短。

试题详情

24.调制(2分),调谐(2分)

试题详情


同步练习册答案