2.(2009湖北卷文)已知(1+ax)3,=1+10x+bx3+…+a3x3,则b= .
[答案]40
[解析]因为∴ .解得
1.(2009宁夏海南卷理)7名志愿者中安排6人在周六、周日两天参加社区公益活动。若每天安排3人,则不同的安排方案共有________________种(用数字作答)。
解析:,答案:140
24.(2009重庆卷文)12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为( )
A. B. C. D.
[答案]B
解析因为将12个组分成4个组的分法有种,而3个强队恰好被分在同一组分法有,故个强队恰好被分在同一组的概率为。
23.(2009重庆卷文)的展开式中的系数是( ).
A.20 B.40 C.80 D.160
[答案]D
解法1设含的为第,则,令,得,故展开式中的系数为。
解法2根据二项展开式的通过公式的特点:二项展开式每一项中所含的与2分得的次数和为6,则根据条件满足条件的项按3与3分配即可,则展开式中的系数为。
22.(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是
A. 360 B. 188 C. 216 D. 96
[考点定位]本小题考查排列综合问题,基础题。
解析:6位同学站成一排,3位女生中有且只有两位女生相邻的排法有种,其中男生甲站两端的有,符合条件的排法故共有188
解析2:由题意有,选B。
20.(2009陕西卷文)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为
(A)432 (B)288 (C) 216 (D)108网
答案:C.
解析:首先个位数字必须为奇数,从1,3,5,7四个中选择一个有种,再丛剩余3个奇数中选择一个,从2,4,6三个偶数中选择两个,进行十位,百位,千位三个位置的全排。则共有故选C. .
21.(2009湖南卷理)从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位 [ C] .
A 85 B 56 C 49 D 28
[答案]:C
[解析]解析由条件可分为两类:一类是甲乙两人只去一个的选法有:,另一类是甲乙都去的选法有=7,所以共有42+7=49,即选C项。
19.(2009陕西卷文)若,则的值为
(A)2 (B)0 (C) (D)
答案:C. .
解析:由题意容易发现,则
, 同理可以得出,………
亦即前2008项和为0, 则原式== 故选C.
18.(2009四川卷文)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是
A. 60 B. 48 C. 42 D. 36
[答案]B
[解析]解法一、从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端。则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6×2=12种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12×4=48种不同排法。
解法二;同解法一,从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:
第一类:女生A、B在两端,男生甲、乙在中间,共有=24种排法;
第二类:“捆绑”A和男生乙在两端,则中间女生B和男生甲只有一种排法,此时共有=12种排法
第三类:女生B和男生乙在两端,同样中间“捆绑”A和男生甲也只有一种排法。
此时共有=12种排法
三类之和为24+12+12=48种。
17.(2009全国卷Ⅰ文)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有
(A)150种 (B)180种 (C)300种 (D)345种
[解析]本小题考查分类计算原理、分步计数原理、组合等问题,基础题。
解:由题共有,故选择D。
16.(2009湖南卷文)某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为[ B ]
A.14 B.16 C.20 D.48
解:由间接法得,故选B.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com