0  411017  411025  411031  411035  411041  411043  411047  411053  411055  411061  411067  411071  411073  411077  411083  411085  411091  411095  411097  411101  411103  411107  411109  411111  411112  411113  411115  411116  411117  411119  411121  411125  411127  411131  411133  411137  411143  411145  411151  411155  411157  411161  411167  411173  411175  411181  411185  411187  411193  411197  411203  411211  447090 

18.(江西卷)(本小题满分12分)

某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令表示该公司的资助总额.

 (1) 写出的分布列; (2) 求数学期望.      

解:(1)的所有取值为

         

      

(2).

试题详情

16、(全国卷2)20(本小题满分12分)

某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核。

(I)求从甲、乙两组各抽取的人数;   

(II)求从甲组抽取的工人中恰有1名女工人的概率;

(III)记表示抽取的3名工人中男工人数,求的分布列及数学期望。        

分析:(I)这一问较简单,关键是把握题意,理解分层抽样的原理即可。另外要注意此分层抽样与性别无关。

(II)在第一问的基础上,这一问处理起来也并不困难。

 从甲组抽取的工人中恰有1名女工人的概率

(III)的可能取值为0,1,2,3

分布列及期望略。

评析:本题较常规,比08年的概率统计题要容易。在计算时,采用分类的方法,用直接法也可,但较繁琐,考生应增强灵活变通的能力。

试题详情

15、(山东卷) (19)(本小题满分12分)

   在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为

       
0     
2       
  3  
  4  
  5  
     p    
0.03     
  P1       
  P2      
P3     
P4       

(1)    求q的值;   

(2)    求随机变量的数学期望E;

(3)    试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。

解:(1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25,, P(B)= q,.

根据分布列知: =0时=0.03,所以,q=0.8.

(2)当=2时, P1=    

=0.75 q( )×2=1.5 q( )=0.24

=3时, P2  ==0.01,

=4时, P3==0.48,

=5时, P4=

=0.24

所以随机变量的分布列为

       
0     
2       
  3  
  4  
  5  
  p    
0.03     
  0.24       
  0.01     
0.48    
0.24         

随机变量的数学期望

(3)该同学选择都在B处投篮得分超过3分的概率为

;

该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.

由此看来该同学选择都在B处投篮得分超过3分的概率大.

[命题立意]:本题主要考查了互斥事件的概率,相互独立事件的概率和数学期望,以及运用概率知识解决问题的能力.

试题详情

14、(全国1)19.(本小题满分12分)(注意:在试题卷上作答无效)

  甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局。

 (I)求甲获得这次比赛胜利的概率;

 (II)设表示从第3局开始到比赛结束所进行的局数,求得分布列及数学期望。

分析:本题较常规,比08年的概率统计题要容易。

需提醒的是:认真审题是前提,部分考生由于考虑了前两局的概率而导致失分,这是很可惜的,主要原因在于没读懂题。

另外,还要注意表述,这也是考生较薄弱的环节。

试题详情

13、(辽宁卷)(19)(本小题满分12分)

某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。

(Ⅰ)设X表示目标被击中的次数,求X的分布列;

(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A)     

(19)解:

(Ⅰ)依题意X的分列为

  

       ………………6分

(Ⅱ)设A1表示事件“第一次击中目标时,击中第i部分”,i=1,2.

     B1表示事件“第二次击中目标时,击中第i部分”,i=1,2.

依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,

,

所求的概率为

   

           ………12分

 

试题详情

12、(浙江卷)

20090423
 
19.(本题满分14分)在个自然数中,任取个数.

  (I)求这个数中恰有个是偶数的概率;

  (II)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数

,此时的值是).求随机变量的分布列及其数学期望

解析:(I)记“这3个数恰有一个是偶数”为事件A,则;   

(II)随机变量的取值为的分布列为


0
1
2
P



所以的数学期望为    

试题详情

11、(天津卷)(18)(本小题满分12分)

在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求:

(I) 取出的3件产品中一等品件数X的分布列和数学期望;  

(II) 取出的3件产品中一等品件数多于二等品件数的概率。  

本小题主要考查古典概型及计算公式、离散型随机变量的分布列和数学期望、互斥事件等基础知识,考查运用概率知识解决实际问题的能力。满分12分。

(Ⅰ)解:由于从10件产品中任取3件的结果为,从10件产品中任取3件,其中恰有k件一等品的结果数为,那么从10件产品中任取3件,其中恰有k件一等品的概率为P(X=k)= ,k=0,1,2,3.

所以随机变量X的分布列是

X
0
1
2
3
P




X的数学期望EX=

(Ⅱ)解:设“取出的3件产品中一等品件数多于二等品件数”为事件A,“恰好取出1件一等品和2件三等品”为事件A1“恰好取出2件一等品“为事件A2,”恰好取出3件一等品”为事件A3由于事件A1,A2,A3彼此互斥,且A=A1∪A2∪A3

P(A2)=P(X=2)= ,P(A3)=P(X=3)= ,

所以取出的3件产品中一等品件数多于二等品件数的概率为

P(A)=P(A1)+P(A2)+P(A3)= ++=

试题详情

10、(四川卷)18. (本小题满分12分)

为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客。在省外游客中有持金卡,在省内游客中有持银卡。

(I)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;

(II)在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量,求的分布列及数学期望

(18)本小题主要考察相互独立事件、互斥事件、随机变量的分布列、数学期望等概率计算,考察运用概率只是解决实际问题的能力。

   解:(Ⅰ)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡。设事件为“采访该团3人中,恰有1人持金卡且持银卡者少于2人”,

   事件为“采访该团3人中,1人持金卡,0人持银卡”,

   事件为“采访该团3人中,1人持金卡,1人持银卡”。

  

     

     

      

   所以在该团中随机采访3人,恰有1人持金卡且持银卡者少于2人的概率是

…………………………………………………………6分

(Ⅱ)的可能取值为0,1,2,3

    ,  

   

   所以的分布列为


0
1
2
3





   所以,  ……………………12分  

试题详情

9、(重庆卷)17.(本小题满分13分,(Ⅰ)问7分,(Ⅱ)问6分)

某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为,且各株大树是否成活互不影响.求移栽的4株大树中:

(Ⅰ)两种大树各成活1株的概率;

(Ⅱ)成活的株数的分布列与期望.w.w.

(17)(本小题13分)

解:设表示甲种大树成活k株,k=0,1,2

 表示乙种大树成活l株,l=0,1,2

 则独立. 由独立重复试验中事件发生的概率公式有

    ,  .

   据此算得

  ,   ,  .

    ,   ,  .

   (Ⅰ) 所求概率为

   .

   (Ⅱ) 解法一:

  的所有可能值为0,1,2,3,4,且

      ,

      ,

    

         = ,

      .

      .

综上知有分布列


0
1
2
3
4
P
1/36
1/6
13/36
1/3
1/9

从而,的期望为

(株)

解法二:

分布列的求法同上

分别表示甲乙两种树成活的株数,则

故有

从而知

试题详情

8、(重庆卷)6.锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同。从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为(  C  )

A.    B.     C.     D.    

试题详情


同步练习册答案