0  411857  411865  411871  411875  411881  411883  411887  411893  411895  411901  411907  411911  411913  411917  411923  411925  411931  411935  411937  411941  411943  411947  411949  411951  411952  411953  411955  411956  411957  411959  411961  411965  411967  411971  411973  411977  411983  411985  411991  411995  411997  412001  412007  412013  412015  412021  412025  412027  412033  412037  412043  412051  447090 

1.命题材料时代气息浓厚,语言材料新鲜活泼,贴近现代生活。多从当前时事.报刊杂志和新闻广播取材。如下面两个选项: A.引起世界关注的甲型流感病毒虽然不易致命,但传播速度快,如果不想办法找到它的演变原理,病情很容易迅速蔓延,给人类健康带来巨大威胁。C.尽管国际金融危机的影响还在蔓延,但随着一系列经济刺激计划的逐步落实,中国经济出现回暖迹象,人们对经济复苏的信心开始回升。

试题详情

20、已知函数的图象经过点,记

(1)求数列的通项公式;

(2)设,若,求的最小值;

(3)求使不等式对一切均成立的最大实数.

试题详情

19.设函数

  (Ⅰ)求函数的极值点;

  (Ⅱ)当p>0时,若对任意的x>0,恒有,求p的取值范围;

  (Ⅲ)证明:

试题详情

18. 设分别是椭圆的左、右焦点.

(Ⅰ)若P是该椭圆上的一个动点,求的最大值和最小值;

  (Ⅱ)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.

试题详情

17.某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不作广告宣传且每件获利a元的前提下,可卖出b件.若作广告宣传,广告费为n千元时比广告费为(n-1)千元时多卖出件,(n∈N*).

(1)试写出销售量sn的函数关系式;

(2)当a=10,b=4000时厂家应生产多少件这种产品,做几千元广告,才能获利最大?

试题详情

16.在四面体中,,且分别是的中点,

求证:(1)直线∥面

(2)面

试题详情

15、在中,已知内角,边.设内角,面积为.

(1)  求函数的解析式和定义域;

(2)  求的最大值.

试题详情

14. 若函数,图象恒过定点A,又点A在直线上,若是正数,则的最小值是     

试题详情

13.数列{an}的前n项和Snn2+1,数列{bn}满足:b1=1,当n≥2时,bna,设数列{bn}的前n项和为Tn,则T5     

试题详情

12、三位同学在研究函数 f (x) = (x∈R) 时,分别给出下面三个结论: ① 函数 f (x) 的值域为 (-1,1) ② 若x1x2,则一定有f (x1)≠f (x2) ③ 若规定 f1(x) = f (x),fn+1(x) = f [ fn(x)],则 fn(x) = 对任意 n∈N* 恒成立.   你认为上述三个结论中正确的有       (填上所有正确结论的序号)

试题详情


同步练习册答案