0  411873  411881  411887  411891  411897  411899  411903  411909  411911  411917  411923  411927  411929  411933  411939  411941  411947  411951  411953  411957  411959  411963  411965  411967  411968  411969  411971  411972  411973  411975  411977  411981  411983  411987  411989  411993  411999  412001  412007  412011  412013  412017  412023  412029  412031  412037  412041  412043  412049  412053  412059  412067  447090 

5.有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题。

分析:由于两个墨水瓶中的墨水不能直接交换,故可以考虑通过引入第三个空墨水瓶的办法进行交换。

试题详情

4.任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.

试题详情

3.你要乘火车去外地办一件急事,请你写出从自己房间出发到坐在车厢内的三步主要算法S1   ,S2    ,S3   

试题详情

2.在数学中,现代意义上的算法是指(   )

A.用阿拉伯数字进行运算的过程

B.解决某一类问题的程序或步骤

C.计算机在有限步骤之内完成,用来解决某一类问题的明确有效的程序或步骤

D.用计算机进行数学运算的方法

试题详情

1.下列关于算法的说法中,正确的有(    )

①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果。

A、1个      B、2个      C、3个       D、4个

试题详情

3、算法的表述形式:

⑴用日常语言和数学语言或借助于形式语言(算法语言)各处精确的说明。

⑵程序框图(简称框图)。

⑶程序语言。

试题详情

2、算法的五大特征:

⑴逻辑性:  算法应具有正确性和顺序性。算法从初始步骤开始,分为若干明确的步骤,前一步是后一步的基础,只有执行完前一步才能进行下一步,并且每一步都有确切的含义,组成了具有很强的逻辑性的序列。

⑵概括性:  算法必须能解决一类问题,并且能重复使用。

⑶有限性:  一个算法必须保证执行有限步后结束

⑷非唯一性:求解某个问题的算法不一定是唯一的,对于一个问题可以有不同的算法。

⑸普遍性:  许多的问题可以设计合理的算法去解决。如:如用二分法求方程的近似零点,求几何体的体积等等。

试题详情

1、算法的定义:

算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。

试题详情

例3:写出求1×2×3×4×5的算法。

步骤1:先求1×2,得到结果2;

步骤2:将步骤1得到的结果2再乘以3,得到6;

步骤3:将步骤2得到的结果6再乘以4,得到结果24;

步骤4:将步骤3得到的结果24再乘以5,得到120。

例4:写出一个求整数a、b、c最大值的算法

解:S1 先假定序列中的第一个数为"最大值"。

S2 将序列中的下一个整数值与"最大值"比较,如果大于"最大值",这时就假定这个数为"最大值"。

S3 如果序列中还有其它整数,重复S2。

S4 直到序列中没有可比的数为止,这时假定的"最大值"就是序列的最大值。

即 S1 max=a。

S2 如果b>max,则max=b。

S3 如果c>max,则max=c。

S4 max就是a、b、c的最大值。

试题详情

通过对以上几个问题的分析,我们对算法有了一个初步的了解.在解决某些问题时,需要设计出一系列可操作或可计算的步骤,通过实施这些步骤来解决问题,通常把这些步骤称为解决这些问题的算法.

在数学中,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.

问题:我们要解决解决一类问题,我们可以抽象出其解题步骤或计算序列,他们有什么样的要求?

(1)算法与一般意义上具体问题的解法既有联系,又有区别,它们之间是一般和特殊的关系,也是抽象与具体的关系。算法的获得要借助一般意义上具体问题的求解方法,而任何一个具体问题都可以利用这类问题的一般算法来解决。

(2)算法的五个特征

①有穷性:一个算法的步骤序列是有限的,它应在有限步操作之后停止,而不能是无限地执行下去。

②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可的。

③逻辑性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。

④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法。

⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限的、事先设计好的步骤加以解决。

试题详情


同步练习册答案