0  413388  413396  413402  413406  413412  413414  413418  413424  413426  413432  413438  413442  413444  413448  413454  413456  413462  413466  413468  413472  413474  413478  413480  413482  413483  413484  413486  413487  413488  413490  413492  413496  413498  413502  413504  413508  413514  413516  413522  413526  413528  413532  413538  413544  413546  413552  413556  413558  413564  413568  413574  413582  447090 

1.掌握三角形中的的基本公式和正余弦定理;

试题详情

[例1](2006天津)如图,在中,

(1)求的值;

(2)求的值.

解(Ⅰ):  由余弦定理,

    

      

(Ⅱ)解:由,且

由正弦定理:

解得。所以,。由倍角公式

,故

.

提炼方法:已知两边夹角,用余弦定理,由三角函数值求三角函数值时要注意“三角形内角”的限制.

[例2]在ΔABC中,已知a=,b=,B=45°,求A,C及边c.

解:由正弦定理得:sinA=,因为B=45°<90°且b<a,

所以有两解A=60°或A=120°

(1)当A=60°时,C=180°-(A+B)=75°, c=,

(2)当A=120°时,C=180°-(A+B)=15 °,c=

提炼方法:已知两边和其中一边的对角解三角形问题,用正弦定理求解,必需注意解的情况的讨论.

[例3](2006上海)如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救  甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到)?

[解]  连接BC,由余弦定理得

BC2=202+102-2×20×10COS120°=700 

   于是,BC=10 

30°
 
   ∵,   ∴sin∠ACB=,

   ∵∠ACB<90°      ∴∠ACB=41°

∴乙船应朝北偏东71°方向沿直线前往B处救援 

思路点拨:把实际问题转化为解斜三角形问题,在问题中构造出三角形,标出已知量、未知量,确定解三角形的方法;

 

[例4]已知⊙O的半径为R,,在它的内接三角形ABC中,有

成立,求△ABC面积S的最大值.

解:由已知条件得

.即有

 ∴  .

时,

思路方法:1.边角互化是解三角形问题常用的手段.一般有两种思路:一是边化角;二是角化边。

2.三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

[研讨.欣赏]

(2006江西)如图,已知△是边长为的正三角形, 分别是边上的点,线段经过△的中心.设.

(1)   试将△、△的面积(分别记为)表示为的函数;

(2)   的最大值与最小值.

解:

    (1)因为为边长为的正三角形的中心,

     所以

    由正弦定理

    

      因为,所以当时,的最大值;

      当时, 的最小值.

试题详情

4.组成边长6,7,7时面积最大; 5. ; 6.

试题详情

6.(2006春上海)在△中,已知,三角形面积为12,则

    .

答案:1-4.BBCB; 3.由2cosBsinA=sinC×a=c,∴a=b.

试题详情

5.(2006全国Ⅱ)已知的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为_________.

试题详情

4. (2006全国Ⅰ)用长度分别为2、3、4、5、6(单位:)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为 (  )

A.   B.       C.      D.

试题详情

3.(2002年上海)在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是

A.等腰直角三角形                          B.直角三角形

C.等腰三角形                             D.等边三角形

试题详情

2.在△ABC中,AB=3,BC=,AC=4,则边AC上的高为(   )

A.  B.   C.  D.

试题详情

1.(2006山东)在中,角的对边分别为,已知,则  (  )

A.1           B.2            C.            D.

试题详情

6.熟练掌握实际问题向解斜三角形类型的转化,能在应用题中抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;提高运用所学知识解决实际问题的能力

试题详情


同步练习册答案