3.由tanA+tanB+tanC=tanAtanBtanC>0,A、B、C都为锐角.答案:C
2. 2b=a+c.平方得a2+c2=4b2-2ac.由S=acsin30°=ac=,得ac=6.∴a2+c2=4b2-12.得cosB====,解得b=1+.答案:B
6.在锐角△ABC中,边长a=1,b=2,则边长c的取值范围是_______.
练习简答:1-4.BBCB; 1.在△ABC中,A>30°0<sinA<1sinA>;sinA>30°<A<150°A>30°答案:B
5.(2004春上海)在中,分别是、、所对的边。若,,, 则__________
4.(2006全国Ⅰ)的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且,则 ( )
A. B. C. D.
[填空题]
3..下列条件中,△ABC是锐角三角形的是 ( )
A.sinA+cosA= B.·>0
C.tanA+tanB+tanC>0 D.b=3,c=3,B=30°
2.(2004全国Ⅳ)△ABC中,a、b、c分别为∠A、∠B、∠C的对边,如果a、b、c成等差数列,∠B=30°,△ABC的面积为,那么b等于 ( )
A. B.1+
C. D.2+
1.(2004浙江)在△ABC中,“A>30°”是“sinA>”的 ( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
4.边角互化是解三角形的重要手段.
同步练习 4.6 正弦、余弦定理 解斜三角形
[选择题]
2.利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);3.利用余弦定理,可以解决以下两类问题:
(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com