13. (1),即,又,四边形是平行四边形.
(2分)
平分,, (3分)
又,,,,
四边形是菱形. (4分)
(2)证法一:是中点,.
又,,, (5分)
, (6分)
,.
即,是直角三角形. (7分)
证法二:连,则,且平分, (5分)
设交于.
是的中点,. (6分)
,是直角三角形. (7分)
12. 解法一:矩形中,,, (2分)
. (4分)
,,. (5分)
. (6分)
解法二:矩形中,. (2分)
,,. (4分)
11. 解:(1)证明:∵四边形为正方形,∴BC=CD,∠BCG=∠DCE=90° 2分
∵CG=CE,∴△BCG≌△DCE. ………………4分
(2)答:四边形E′BGD是平行四边形
理由:∵△DCE绕点D顺时针旋转90°得到△DAE′
∴CE=AE′,∵CG=CE,∴CG=AE′,∵AB=CD,AB∥CD,
∴BE′=DG,BE′∥DG,………………6分
∴四边形E′BGD是平行四边形 ………………8分
10. .甲题:
(1)证明:, 2分
, 3分
又,. 4分
(2)解:
, 5分
由(1)知,
, 6分
设,则,
则有, 8分
即,
解得:或,
经检验,或都是原方程的根,但不合题意,舍去.
故的长为1. 9分
9. 解:(1)作图(略). 3分
注:本题作法较多,如:方法一,作的中垂线:方法二,以为圆心,为半径画弧,交于点.等等.
(2)如图(1),为菱形,
平分, 5分
又,
在中,,
则, 6分
又分别是、的中点,
, 7分
故菱形的面积(cm2). 9分
(我感觉此题不正确,这样能保证以E.F为圆心,以AE的长为半径的弧交点一定在BC上吗)
8. (1)解:由题意,有△BEF≌△DEF.
∴BF=DF. ……1分
如图,过点A作AG⊥BG于点G.
则四边形AGFD是矩形。
∴AG=DF,GF=AD=4.
在Rt△ABG和Rt△DCF种,
∵AB=DC,AG=DF,
∴Rt△ABG≌Rt△DCF.(HL)
∴BG=CF. ……2分
∴BG===2.
∴DF=BF=BG+GF=2+4=6. ……2分
∴S梯形ABCD=. ……1分
(2)猜想:CG=(或). ……1分
证明:如图,过点E作EH∥CG,交BC于点H.
则∠FEH=∠FGC.
又∠EFH=∠GFC,
∴△EFH∽△GFC.
∴
而FG=kEF,即.
∴ 即 ……1分
∵EH∥CG, ∴∠EHB=∠DCB.
而ABCD是等腰梯形,∴∠B=∠DCB.
∴∠B=∠EHB.∴BE=EH. ∴CG= ……1分
7.(1)证明:点是中点
1分
又,在延长线上,
, 3分
在与中 5分
6分
(2)四边形是平行四边形.理由如下: 7分
, 9分
四边形是平行四边形. 10分
6. 解:(1)过点G作GH⊥AD,则四边形ABGH为矩形,∴GH=AB=8,AH=BG=10,由图形的折叠可知△BFG≌△EFG,∴EG=BG=10,∠FEG=∠B=90°;∴EH=6,AE=4,∠AEF+∠HEG=90°,∵∠AEF+∠AFE=90°,∴∠HEG=∠AFE,又∵∠EHG=∠A=90°,∴△EAF∽△EHG,∴,∴EF=5,∴S△EFG=EF·EG=×5×10=25.
(2)由图形的折叠可知四边形ABGF≌四边形HEGF,∴BG=EG,AB=EH,
∠BGF=∠EGF,∵EF∥BG,∴∠BGF=∠EFG,∴∠EGF =∠EFG,∴EF=EG,
∴BG=EF,∴四边形BGEF为平行四边形,又∵EF=EG,∴平行四边形BGEF为菱形;
连结BE,BE、FG互相垂直平分,在Rt△EFH中,EF=BG=10,EH=AB=8,由勾股定理可得FH=AF=6,∴AE=16,∴BE==8,∴BO=4,∴
FG=2OG=2=4。
5. 解:(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H. ……………1分
∵ AB∥CD,
∴ DG=CH,DG∥CH.
∴ 四边形DGHC为矩形,GH=CD=1.
∵ DG=CH,AD=BC,∠AGD=∠BHC=90°,
∴ △AGD≌△BHC(HL).
∴ AG=BH==3. ………2分
∵ 在Rt△AGD中,AG=3,AD=5,
∴ DG=4.
∴ . ………………………………………………3分
(2)∵ MN∥AB,ME⊥AB,NF⊥AB,
∴ ME=NF,ME∥NF.
∴ 四边形MEFN为矩形.
∵ AB∥CD,AD=BC,
∴ ∠A=∠B.
∵ ME=NF,∠MEA=∠NFB=90°,
∴ △MEA≌△NFB(AAS).
∴ AE=BF. ……………………4分
设AE=x,则EF=7-2x. ……………5分
∵ ∠A=∠A,∠MEA=∠DGA=90°,
∴ △MEA∽△DGA.
∴ .
∴ ME=. ……………………………………………………6分
∴ . ……………………8分
当x=时,ME=<4,∴四边形MEFN面积的最大值为.……………9分
(3)能. …………………………………………………………………10分
由(2)可知,设AE=x,则EF=7-2x,ME=.
若四边形MEFN为正方形,则ME=EF.
即 7-2x.解,得 . ………………………………………11分
∴ EF=<4.
∴ 四边形MEFN能为正方形,其面积为.
4. 答案:(本题答案不唯一)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com