39.(浙江)(18)(本题14分)已知的周长为,且.
(I)求边的长;
(II)若的面积为,求角的度数.
(18)解:(I)由题意及正弦定理,得,
,
两式相减,得.
(II)由的面积,得,
由余弦定理,得
,
所以.
38.(广东文)16.(本小题满分14分)
已知ΔABC三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(,0).
(1)若,求的值;
(2)若,求sin∠A的值
解: (1)
由 得
(2)
37.(广东)16.(本小题满分12分)
已知△顶点的直角坐标分别为.
(1)若,求sin∠的值;
(2)若∠是钝角,求的取值范围.
解:(1) , 当c=5时,
进而
(2)若A为钝角,则
AB﹒AC= -3(c-3)+( -4)2<0 解得c>
显然此时有AB和AC不共线,故当A为钝角时,c的取值范围为[,+)
36.(福建)17.(本小题满分12分)
在中,,.
(Ⅰ)求角的大小;
(Ⅱ)若最大边的边长为,求最小边的边长.
本小题主要考查两角和差公式,用同角三角函数关系等解斜三角形的基本知识以及推理和运算能力,满分12分.
解:(Ⅰ),
.又,.
(Ⅱ),边最大,即.
又,角最小,边为最小边.
由且,
得.由得:.
所以,最小边.
35.(宁夏,海南)17.(本小题满分12分)
如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个侧点与.现测得,并在点测得塔顶的仰角为,求塔高.
解:在中,.
由正弦定理得.
所以.
在中,.
(安徽13)
在四面体中,为的中点,为的中点,则 (用表示).
(北京11.)
已知向量.若向量,则实数的值是
(北京12.)
在中,若,,,则
(广东10. )
若向量、满足的夹角为120°,则= .
(湖南12.)
在中,角所对的边分别为,若,b=,,则 .
(湖南文12.)
在中,角所对的边分别为,若,,,则 .
(江西15.)
如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,,则的值为 2 .
(江西文13.)
在平面直角坐标系中,正方形的对角线的两端点分别为,,则 .
(陕西15. )
如图,平面内有三个向量、、,其中与与的夹角为120°,与的夹角为30°,且||=||=1,||=,若=λ+μ(λ,μ∈R),则λ+μ的值为 .
(天津15.)
如图,在中,,是边上一点,,则 .
(天津文15)
在中,,,是边的中点,则.
(重庆文(13))
在△ABC中,AB=1,BC=2,B=60°,则AC= 。
(上海文6.)
若向量的夹角为,,则 .
23.请以《站在___________的门口》为题写一篇文章。(60分)
要求:①将题目补充完整,并写在答题卡上,然后作文。
②立意自定。
③文体不限。可以记叙经历,抒发感情,发表议论,展开想象,等等。
④不少于800字。
统计
命题作文:8
文体作文:1
话题作文:1
材料作文:7
21.请以“踮起脚尖”为题目,写一篇不少于800字的议论文或记叙文。(60分)
2009年江西卷
21.作文(60分)
请以“熟悉”为题目,写一篇不少于800字的文章。立意自定,文体自选。
2009年湖南卷
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com