0  414063  414071  414077  414081  414087  414089  414093  414099  414101  414107  414113  414117  414119  414123  414129  414131  414137  414141  414143  414147  414149  414153  414155  414157  414158  414159  414161  414162  414163  414165  414167  414171  414173  414177  414179  414183  414189  414191  414197  414201  414203  414207  414213  414219  414221  414227  414231  414233  414239  414243  414249  414257  447090 

6.将8个队分成两个组,每组4个队进行比赛,其中这两个强队被分在一个组内的概率是________.

练习简答:1.C;  2. P=+=+=;  3.分先摸白球和黑球两种情况: P=+=;  4. P=1-=;

试题详情

5.有10张人民币,其中伍元的有2张,贰元的有3张,壹元的有5张,从中任取3张,则3张中至少有2张的币值相同的概率为________.

试题详情

4.有3人,每人都以相同的概率被分配到4个房间中的一间,则至少有2人分配到同一房间的概率是________.

试题详情

3.一个口袋中装有大小相同的2个白球和3个黑球,从中摸出一个球,放回后再摸出一个球,则两次摸出的球恰好颜色不同的概率为________.

试题详情

2.一批产品共10件,其中有两件次品,现随机地抽取5件,则所取5件中至多有一件次品的概率为  (  )

A.       B.     C.       D.

[填空题]

试题详情

1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是 (  )

A.至少有1个白球,都是红球      B.至少有1个白球,至多有1个红球

C.恰有1个白球,恰有2个白球     D.至多有1个白球,都是红球

试题详情

4.求较复杂事件概率的方法:

(1)将所求事件的概率化为彼此互斥的事件的概率分类计算,再求和;

(2)先求对立事件的概率,再利用公式

同步练习  10.6 互斥事件有一个发生的概率   

[选择题]

试题详情

1.互斥事件、对立事件的确定和计算;

试题详情

[例1]某单位组织4个部门的职工旅游,规定每个部门只能在3个景区中任选一个,假设各部门选择每个景区是等可能的.

 (Ⅰ)求3个景区都有部门选择的概率;

 (Ⅱ)求恰有2个景区有部门选择的概率.

解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.

(I)3个景区都有部门选择可能出现的结果数为(从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A1,那么事件A1的概率为

P(A1)=

(II)解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A2和A3,则事件A3的概率为P(A3)=,事件A2的概率为

P(A2)=1-P(A1)-P(A3)=

解法二:恰有2个景区有部门选择可能的结果为(先从3个景区任意选定2个,共有种选法,再让4个部门来选择这2个景区,分两种情况:第一种情况,从4个部门中任取1个作为1组,另外3个部门作为1组,共2组,每组选择2个不同的景区,共有种不同选法.第二种情况,从4个部门中任选2个部门到1个景区,另外2个部门在另1个景区,共有种不同选法).所以

P(A2)=

[例2]今有标号为1,2,3,4,5的五封信,另有同样标号的五个信封.现将五封信任意地装入五个信封,每个信封装入一封信,试求

(1)  至少有两封信配对的概率.

(2)  至少有一封信配对的概率

(3) 没有一封信配对.

解:(1)设恰有两封信配对为事件A,恰有三封信配对为事件B,恰有四封信(也即五封信配对)为事件C,则“至少有两封信配对”事件等于A+B+C,且ABC两两互斥.

P(A)=P(B)=P(C)=

∴所求概率P(A)+P(B)+P(C)=.

即至少有两封信配对的概率是.

(2)恰有四封信不配对的装法有C51(3×3)种,

∴至少有一封信配对的概率为.

(3) 1-.

提炼方法:1.灵活运用事件的互斥与对立关系,进行分类计算,或间接计算.

2.恰有四封信不配对的算法.

[例3] 学校文艺队每个队员唱歌、跳舞至少会一门,已知会唱歌的有5人,会跳舞的有7人,现从中选3人,且至少要有一位既会唱歌又会跳舞的概率是,问该队有多少人?

解:设该队既会唱歌又会跳舞的有x人,从而只会唱歌或只会跳舞的有(12-x)人,记“至少要有一位既会唱歌又会跳舞”的事件为A,则事件A的对立事件是“只会唱歌或只会跳舞”

解得x=3,  12-x=9,故该队共有9人

[例4]在袋中装20个小球,其中彩球有n个红色、5个蓝色、10个黄色,其余为白球.

求:(1)如果从袋中取出3个都是相同颜色彩球(无白色)的概率是,且n≥2,那么,袋中的红球共有几个?

(2)根据(1)的结论,计算从袋中任取3个小球至少有一个是红球的概率.

解:(1)取3个球的种数为C=1140.

设“3个球全为红色”为事件A,“3个球全为蓝色”为事件B,“3个球全为黄色”为事件C.

P(B)==P(C)==.

ABC为互斥事件,

P(A+B+C)=P(A)+P(B)+P(C),

=P(A)++P(A)=0 取3个球全为红球的个数≤2.

又∵n≥2,故n=2.

(2)记“3个球中至少有一个是红球”为事件D.则为“3个球中没有红球”.

P(D)=1-P()=1-=

P(D)==.

[研讨.欣赏]有人玩掷硬币走跳棋的游戏,已知硬币出现正反面为等可能性事件,棋盘上标有第0站,第1站,第2站,…,第100站,一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋向前跳一站(从kk+1),若掷出反面,棋向前跳两站(从kk+2),直到棋子跳到第99站(胜利大本营)或跳到第100站(失败集中营)时,该游戏结束.设棋子跳到第n站概率为Pn.

(1)求P0P1P2的值;

(2)求证:PnPn-1=-(Pn-1Pn-2),其中n∈N,2≤n≤99;

(3)求P99P100的值.

(1)解:棋子开始在第0站为必然事件,∴P0=1.

第一次掷硬币出现正面,棋子跳到第1站,其概率为

P1=.棋子跳到第2站应从如下两方面考虑:

①前两次掷硬币都出现正面,其概率为

②第一次掷硬币出现反面,其概率为.

P2=+=.

(2)证明:棋子跳到第n(2≤n≤99)站的情况是下列两种,而且也只有两种:

①棋子先到第n-2站,又掷出反面,其概率为Pn-2

②棋子先到第n-1站,又掷出正面,其概率为Pn-1.

Pn=Pn-2+Pn-1. ∴PnPn-1=-(Pn-1Pn-2).

(3)解:由(2)知,当1≤n≤99时,数列{PnPn-1}是首项为P1P0=-,公比为-的等比数列.

P1-1=-P2P1=(-)2

P3P2=(-)3,…,PnPn-1=(-)n.

以上各式相加,得Pn-1=(-)+(-)2+…+(-)n

Pn=1+(-)+(-)2+…+(-)n

=[1-(-)n+1](n=0,1,2,…,99).

P99=[1-()100],

P100=P98=·[1-(-)99]=[1+()99].

提炼方法:求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥的事件的概率的和;二是先去求此事件的对立事件的概率.

试题详情

5.;  6. + =.

试题详情


同步练习册答案