0  414155  414163  414169  414173  414179  414181  414185  414191  414193  414199  414205  414209  414211  414215  414221  414223  414229  414233  414235  414239  414241  414245  414247  414249  414250  414251  414253  414254  414255  414257  414259  414263  414265  414269  414271  414275  414281  414283  414289  414293  414295  414299  414305  414311  414313  414319  414323  414325  414331  414335  414341  414349  447090 

5. - Shall we go on a picnic?   -That’s going to be ______

A.    fun  B. funny  C. fun  D. very fun

试题详情

4. Jim and Bill don’t live _____ the middle school.

A. away from  B. far from  C. far away  D. far

试题详情

3. They have decided to go to work _____every day.

A. by bikes  B. on feet  C. by bus  D. in car

试题详情

2. Jack began to do his homework as soon as he____ home.

A. came to  B. reached  C. arrived at  D. got to

试题详情

1. The bus station is about five hundred meters____ here,it’s within walking distance.

A. away from  B. away  C. far away from  D. far from

试题详情

12.设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.

(1)试判断函数y=f(x)的奇偶性; 

(2)试求方程f(x)=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论.

解 (1)由

 从而知函数y=f(x)的周期为T=10.又f(3)=f(1)=0,而f(7)≠0,故f(-3)≠0. 

故函数y=f(x)是非奇非偶函数. 

(2)由(1)知y=f(x)的周期为10. 

又f(3)=f(1)=0,f(11)=f(13)=f(-7)=f(-9)=0, 

故f(x)在[0,10]和[-10,0]上均有两个解,从而可知函数y=f(x)在[0,2 005]上有402个解,在[-2 005,0]上有400个解,所以函数y=f(x)在[-2 005,2 005]上有802个解.

试题详情

11.已知函数f(x)=x2+|x-a|+1,a∈R. 

(1)试判断f(x)的奇偶性; 

(2)若-≤a≤,求f(x)的最小值.

解  (1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x), 

此时,f(x)为偶函数.当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1, 

f(a)≠f(-a),f(a)≠-f(-a),此时,f(x) 为非奇非偶函数. 

(2)当x≤a时,f(x)=x2-x+a+1=(x-)2+a+, 

∵a≤,故函数f(x)在(-∞,a]上单调递减, 

从而函数f(x)在(-∞,a]上的最小值为f(a)=a2+1. 

当x≥a时,函数f(x)=x2+x-a+1=(x+)2-a+, 

∵a≥-,故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1. 

综上得,当-≤a≤时,函数f(x)的最小值为a2+1. 

试题详情

10.已知f(x)是R上的奇函数,且当x∈(-∞,0)时,f(x)=-xlg(2-x),求f(x)的解析式. 

解  ∵f(x)是奇函数,可得f(0)=-f(0),∴f(0)=0. 

当x>0时,-x<0,由已知f(-x)=xlg(2+x),∴-f(x)=xlg(2+x), 

即f(x)=-xlg(2+x) (x>0).∴f(x)=

即f(x)=-xlg(2+|x|) (x∈R).

试题详情

9.已知f(x)是实数集R上的函数,且对任意xR,f(x)=f(x+1)+f(x-1)恒成立.

  (1)求证:f(x)是周期函数.

  (2)已知f(3)=2,求f(2 004).

   (1)证明  ∵f(x)=f(x+1)+f(x-1),∴f(x+1)=f(x)-f(x-1),

则f(x+2)=f

∴f(x+3)=f

∴f(x+6)=f

∴f(x)是周期函数且6是它的一个周期.

(2)解  f(2 004)=f(334×6)=f(0)=-f(3)=-2.

试题详情

8.f(x)、g(x)都是定义在R上的奇函数,且F(x)=3f(x)+5g(x)+2,若F(a)=b,则F(-a)=     . 

答案  -b+4 

试题详情


同步练习册答案