5. - Shall we go on a picnic? -That’s going to be ______
A. fun B. funny C. fun D. very fun
4. Jim and Bill don’t live _____ the middle school.
A. away from B. far from C. far away D. far
3. They have decided to go to work _____every day.
A. by bikes B. on feet C. by bus D. in car
2. Jack began to do his homework as soon as he____ home.
A. came to B. reached C. arrived at D. got to
1. The bus station is about five hundred meters____ here,it’s within walking distance.
A. away from B. away C. far away from D. far from
12.设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.
(1)试判断函数y=f(x)的奇偶性;
(2)试求方程f(x)=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论.
解 (1)由
从而知函数y=f(x)的周期为T=10.又f(3)=f(1)=0,而f(7)≠0,故f(-3)≠0.
故函数y=f(x)是非奇非偶函数.
(2)由(1)知y=f(x)的周期为10.
又f(3)=f(1)=0,f(11)=f(13)=f(-7)=f(-9)=0,
故f(x)在[0,10]和[-10,0]上均有两个解,从而可知函数y=f(x)在[0,2 005]上有402个解,在[-2 005,0]上有400个解,所以函数y=f(x)在[-2 005,2 005]上有802个解.
11.已知函数f(x)=x2+|x-a|+1,a∈R.
(1)试判断f(x)的奇偶性;
(2)若-≤a≤,求f(x)的最小值.
解 (1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),
此时,f(x)为偶函数.当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,
f(a)≠f(-a),f(a)≠-f(-a),此时,f(x) 为非奇非偶函数.
(2)当x≤a时,f(x)=x2-x+a+1=(x-)2+a+,
∵a≤,故函数f(x)在(-∞,a]上单调递减,
从而函数f(x)在(-∞,a]上的最小值为f(a)=a2+1.
当x≥a时,函数f(x)=x2+x-a+1=(x+)2-a+,
∵a≥-,故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.
综上得,当-≤a≤时,函数f(x)的最小值为a2+1.
10.已知f(x)是R上的奇函数,且当x∈(-∞,0)时,f(x)=-xlg(2-x),求f(x)的解析式.
解 ∵f(x)是奇函数,可得f(0)=-f(0),∴f(0)=0.
当x>0时,-x<0,由已知f(-x)=xlg(2+x),∴-f(x)=xlg(2+x),
即f(x)=-xlg(2+x) (x>0).∴f(x)=
即f(x)=-xlg(2+|x|) (x∈R).
9.已知f(x)是实数集R上的函数,且对任意xR,f(x)=f(x+1)+f(x-1)恒成立.
(1)求证:f(x)是周期函数.
(2)已知f(3)=2,求f(2 004).
(1)证明 ∵f(x)=f(x+1)+f(x-1),∴f(x+1)=f(x)-f(x-1),
则f(x+2)=f
∴f(x+3)=f
∴f(x+6)=f
∴f(x)是周期函数且6是它的一个周期.
(2)解 f(2 004)=f(334×6)=f(0)=-f(3)=-2.
8.f(x)、g(x)都是定义在R上的奇函数,且F(x)=3f(x)+5g(x)+2,若F(a)=b,则F(-a)= .
答案 -b+4
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com