0  415152  415160  415166  415170  415176  415178  415182  415188  415190  415196  415202  415206  415208  415212  415218  415220  415226  415230  415232  415236  415238  415242  415244  415246  415247  415248  415250  415251  415252  415254  415256  415260  415262  415266  415268  415272  415278  415280  415286  415290  415292  415296  415302  415308  415310  415316  415320  415322  415328  415332  415338  415346  447090 

2.过点P(-2,m)和Q(m,4)的直线的斜率等于1,则m的值为(   )

A.1        B.4        C.1或3       D.1或4

试题详情

1.直线经过原点和点(-1,-1),则它的倾斜角是(   )

A.       B.      C.     D.-

试题详情

例1 如图,直线的倾斜角=30°,直线,求的斜率.

分析:对于直线的斜率,可通过计算直接获得,而直线的斜率则需要先求出倾斜角,而根据平面几何知识, ,然后再求即可.

解:的斜率=tan=tan30°=

的倾斜角=90°+30°=120°,

的斜率=tan120°=tan(180°-60°)=-tan60°=.

评述:此题要求学生掌握已知直线的倾斜角求斜率,其中涉及到三角函数的诱导公式及特殊角正切值的确定.

例2 已知直线的倾斜角,求直线的斜率:

(1) =0°;(2)=60°;(3) =90°;(4)

分析:通过此题训练,意在使学生熟悉特殊角的斜率.

解:(1)∵tan0°=0  ∴倾斜角为0°的直线斜率为0;

(2)∵tan60°=   ∴倾斜角为60°的直线斜率为

(3)∵tan90°不存在   ∴倾斜角为90°的直线斜率不存在;

(4)∵=-tan=-1,

∴倾斜角为π的直线斜率为-1.

试题详情

4.已知直线的倾斜角的取值范围,利用正切函数的性质,讨论直线斜率及其绝对值的变化情况:

 (1)

作出区间内的函数图象;由图象观察可知:当>0,并且随着的增大,不断增大, 也不断增大.

所以,当时,随着倾斜角的不断增大,直线斜率不断增大,直线斜率的绝对值也不断增大.

(2)

作出区间内的函数图象,由图象观察可知:当<0,并且随着的增大,不断增大,不断减小.

所以当时,随着倾斜角的不断增大,直线的斜率不断增大,但直线斜率的绝对值不断减小.

针对以上结论,虽然有当,随着增大直线斜率不断增大;当,随着增大直线斜率不断增大.  但是当时,随着的增大直线斜率不断增大却是一错误结论.  原因在于正切函数在区间内为单调增函数,在区间内也是单调增函数,但在区间内,却不具有单调性

试题详情

3.概念辨析:为使大家巩固倾斜角和斜率的概念,我们来看下面的题.

关于直线的倾斜角和斜率,下列哪些说法是正确的:

A.任一条直线都有倾斜角,也都有斜率;

B.直线的倾斜角越大,它的斜率就越大;

C.平行于轴的直线的倾斜角是0或π

D.两直线的倾斜角相等,它们的斜率也相等.

E.直线斜率的范围是(-∞,+∞).

辨析:上述说法中,E正确,其余均错误,原因是:A.与x轴垂直的直线倾斜角为,但斜率不存在;B.举反例说明,120°>30°,但=-;C.平行于轴的直线的倾斜角为0;D.如果两直线的倾斜角都是,但斜率不存在,也就谈不上相等.

说明:①当直线和轴平行或重合时,我们规定直线的倾斜角为0°;②直线倾斜角的取值范围是;③倾斜角是90°的直线没有斜率.

试题详情

2.直线的倾斜角与斜率:在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为,那么就叫做直线的倾斜角.

当直线和轴平行或重合时,我们规定直线的倾斜角为0°  因此,根据定义,我们可以得到倾斜角的取值范围是0°≤<180°

倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用表示. 倾斜角是的直线没有斜率

试题详情

1.直线方程的概念:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的点的坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线

在平面直角坐标系中研究直线时,就是利用直线与方程的这种关系,建立直线的方程的概念,并通过方程来研究直线的有关问题.为此,我们先研究直线的倾斜角和斜率

试题详情

3.这两点与函数式的关系:这两点就是满足函数式的两对值.

因此,我们可以得到这样一个结论:一般地,一次函数的图象是一条直线,它是以满足的每一对的值为坐标的点构成的.

由于函数式也可以看作二元一次方程.所以我们可以说,这个方程的解和直线上的点也存在这样的对应关系.

有了上述基础,我们也就不难理解“直线的方程”和“方程的直线”的基本概念

试题详情

2.对于一给定函数,作出它的图象的方法:由于两点确定一条直线,所以在直线上任找两点即可.

试题详情

在初中,我们已经学习过一次函数,并接触过一次函数的图象,现在,请同学们作一下回顾:

1.一次函数的图象特点:一次函数形如,它的图象是一条直线.

试题详情


同步练习册答案