(二)三角函数图象的作法:
1.几何法(利用三角函数线)
2. 描点法:五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).
3.利用图象变换作三角函数图象.
三角函数的图象变换有振幅变换、周期变换和相位变换等,重点掌握函数y=Asin(ωx+φ)+B的作法.
函数y=Asin(ωx+φ)的物理意义:
振幅|A|,周期,频率,相位初相(即当x=0时的相位).(当A>0,ω>0 时以上公式可去绝对值符号),
(1)振幅变换或叫沿y轴的伸缩变换.(用y/A替换y)由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y=Asinx的图象.
(2)周期变换或叫做沿x轴的伸缩变换.(用ωx替换x)由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的倍,得到y=sinω x的图象.
(3)相位变换或叫做左右平移.(用x+φ替换x)由y=sinx的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y=sin(x+φ)的图象.
(4)上下平移(用y+(-b)替换y)由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图象.
注意:由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)+B(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x轴量伸缩量的区别。
(一)熟悉.三角函数图象的特征:
y=tanx
y=cotx
13、是否存在锐角,使得①;②同时成立?若存在,求出;若不存在,说明理由。
12、已知,求的值。
11、已知,求的值。
10、已知,求的值。
9、设中,,,则此三角形是______三角形。
8、已知,则____。
7、(05重庆卷) ( )
A. B. C. D.
6、(05湖北卷)若 ( )
A. B. C. D.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com