0  416013  416021  416027  416031  416037  416039  416043  416049  416051  416057  416063  416067  416069  416073  416079  416081  416087  416091  416093  416097  416099  416103  416105  416107  416108  416109  416111  416112  416113  416115  416117  416121  416123  416127  416129  416133  416139  416141  416147  416151  416153  416157  416163  416169  416171  416177  416181  416183  416189  416193  416199  416207  447090 

6.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的健康状况,需从他们中抽取一个容量为36的样本,在简单随机抽样、系统抽样、分层抽样这三种方法中较合适的抽样方法是___________.

解析:要研究的总体里各部分情况差异较大,因此用分层抽样.

答案:分层抽样

试题详情

5.一个容量为n的样本,分成若干组,已知某数的频数和频率分别为40、0.125,则n的值为

A.640           B.320           C.240           D.160

解析:∵=0.125,∴n=320.故选B.

答案:B

试题详情

4.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是

A.1000名运动员是总体                  B.每个运动员是个体

C.抽取的100名运动员是样本             D.样本容量是100

解析:这个问题我们研究的是运动员的年龄情况.因此应选D.

答案:D

试题详情

3.一个年级有12个班,每个班有50名同学,随机编号为1-50号,为了了解他们在课外的兴趣爱好,要求每班的33号学生留下来参加阅卷调查,这里运用的抽样方法是D

A.分层抽样法                    B.抽签法

C.随机数表法                    D.系统抽样法

试题详情

1.一个总体中共有10个个体,用简单随机抽样的方法从中抽取一容量为3的样本,则某特定个体入样的概率是C

A.             B.         C.              D.

试题详情

(二)总体分布

1.总体:在数理统计中,通常把被研究的对象的全体叫做总体.

2.频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.

3.总体分布:从总体中抽取一个个体,就是一次随机试验,从总体中抽取一个容量为n的样本,就是进行了n次试验,试验连同所出现的结果叫随机事件,所有这些事件的概率分布规律称为总体分布.

4.总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.

它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(ab)内取值的概率等于总体密度曲线,直线x=ax=bx轴所围图形的面积.

试题详情

(一)抽样

1.简单随机抽样:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样 ⑴用简单随机抽样从含有N个个体的总体中抽取一个容量为的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为; ⑵简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等; ⑶简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.(4).简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样

简单抽样常用方法:

(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),

然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本

适用范围:总体的个体数不多时

优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.

  (2)随机数表法: 随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码

  2.系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样.系统抽样的步骤:①采用随机的方式将总体中的个体编号为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等 ②为将整个的编号分段(即分成几个部分),要确定分段的间隔k(N为总体中的个体的个数,n为样本容量)是整数时,k=;当不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数能被n整除,这时k=.③在第一段用简单随机抽样确定起始的个体编号 ④按照事先确定的规则抽取样本(通常是将加上间隔k,得到第2个编号+k,第3个编号+2k,这样继续下去,直到获取整个样本)

①系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;

②与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的.

③总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除在进行系统抽样

   3.分层抽样: 当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,所分成的部分叫做层

  常用的抽样方法及它们之间的联系和区别:

类别
共同点
各自特点
相互联系
适用范围
简单随机
抽样
抽样过程中每个个体被抽取的概率是相同的
从总体中逐个抽取
 
总体中的个数比较少
系统抽样
将总体均匀分成几个部分,按照事先确定的规则在各部分抽取
在起始部分抽样时采用简单随机抽样
总体中的个数比较多
分层抽样
将总体分成几层,分层进行抽取
各层抽样时采用简单抽样或者相同抽样
总体由差异明显的几部分组成

不放回抽样和放回抽样:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.

随机抽样、系统抽样、分层抽样都是不放回抽样

试题详情

14.(辽宁卷)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品.

 (Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P、P

(Ⅱ)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(I)的条件下,求ξ、η的分布列及Eξ、Eη;

(Ⅲ)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人40名,可用资金60万元.设xy分别表示生产甲、乙产品的数量,在(II)的条件下,xy为何值时,最大?最大值是多少?(解答时须给出图示)

试题详情

13.将数字1,2,3,4任意排成一列,如果数字k恰好出现在第k个位置上,则称之为一个巧合,求巧合数的数学期望.

试题详情


同步练习册答案