0  417589  417597  417603  417607  417613  417615  417619  417625  417627  417633  417639  417643  417645  417649  417655  417657  417663  417667  417669  417673  417675  417679  417681  417683  417684  417685  417687  417688  417689  417691  417693  417697  417699  417703  417705  417709  417715  417717  417723  417727  417729  417733  417739  417745  417747  417753  417757  417759  417765  417769  417775  417783  447090 

4.“毒奶粉”事件再次提醒我们要注意食品安全,下列有关食品加工方法安全的是

  A.用工业盐(含NaNO2)来做食品添加剂 

B.用塑料颗粒来制作珍珠奶茶中的“珍珠”

  C.用工业酒精勾兑水来生产低成本白酒 

D.用小苏打来作焙制糕点的发酵粉成分

试题详情

3.“神七”太空舱利用NiFe2O4做催化剂将宇航员呼出的CO2转化为O2,已知Fe 的化合价为+3,则Ni 的化合价为

 A.+1       B.+2       C.+3       D.+4

试题详情

2.下列物质与水混合充分搅拌后能导电的是

 A.氢氧化铜     B.酒精     C.食盐       D.氯化银

试题详情

1.下列在厨房中发生的变化是物理变化的是

A.榨取果汁       B.冬瓜腐烂     C.铁锅生锈      D.煤气燃烧

试题详情

29.问题解决

解:方法一:如图(1-1),连接

 

    由题设,得四边形和四边形关于直线对称.

    ∴垂直平分.∴··········································· 1分

    ∵四边形是正方形,∴

    ∵

     在中,

    ∴解得,即················································ 3分

    在和在中,

······································································· 5分

    设

    解得················································································· 6分

    ∴··································································································· 7分

    方法二:同方法一,········································································· 3分

    如图(1-2),过点于点,连接

 

∴四边形是平行四边形.

    ∴

    同理,四边形也是平行四边形.∴

  ∵

  

  在

  ····························· 5分

······························································ 6分

································································································· 7分

类比归纳

(或);·········································································· 10分

联系拓广

···································································································· 12分

试题详情

26.(1)解:由点坐标为

点坐标为

··················································································· (2分)

解得点的坐标为···································· (3分)

··························································· (4分)

  (2)解:∵点上且

       ∴点坐标为······················································································ (5分)

又∵点上且

点坐标为······················································································ (6分)

··········································································· (7分)

  (3)解法一:时,如图1,矩形重叠部分为五边形(时,为四边形).过,则

 

··································································· (10分)

(2009年山西省太原市)29.(本小题满分12分)

问题解决

如图(1),将正方形纸片折叠,使点落在边上一点(不与点重合),压平后得到折痕.当时,求的值.

 

类比归纳

在图(1)中,若的值等于     ;若的值等于     ;若(为整数),则的值等于     .(用含的式子表示)

联系拓广

  如图(2),将矩形纸片折叠,使点落在边上一点(不与点重合),压平后得到折痕的值等于     .(用含的式子表示)

 

试题详情

26.(2009年山西省)(本题14分)如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.

   (1)求的面积;

(2)求矩形的边的长;

(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设

移动时间为秒,矩形重叠部分的面积为,求

的函数关系式,并写出相应的的取值范围.

试题详情

23.(2009年河南省)(11分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bxA、C两点.  

(1)直接写出点A的坐标,并求出抛物线的解析式;

   (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD

向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点PPEABAC于点E

   ①过点EEFAD于点F,交抛物线于点G.t为何值时,线段EG最长?

②连接EQ.在点PQ运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?

请直接写出相应的t值.

解.(1)点A的坐标为(4,8)         …………………1分

将A  (4,8)、C(8,0)两点坐标分别代入y=ax2+bx

       8=16a+4b

     得             

     0=64a+8b

     解 得a=-,b=4

∴抛物线的解析式为:y=-x2+4x      …………………3分

(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=

PE=AP=t.PB=8-t

∴点E的坐标为(4+t,8-t).

∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8. …………………5分

∴EG=-t2+8-(8-t)

   =-t2+t.

∵-<0,∴当t=4时,线段EG最长为2.       …………………7分

②共有三个时刻.                  …………………8分

t1= t2=t3= .          …………………11分

试题详情

26.解:(1)1,

(2)作QFAC于点F,如图3, AQ = CP= t,∴

由△AQF∽△ABC

.∴

(3)能.

  ①当DEQB时,如图4.

  ∵DEPQ,∴PQQB,四边形QBED是直角梯形.

   此时∠AQP=90°.

由△APQ ∽△ABC,得

. 解得

②如图5,当PQBC时,DEBC,四边形QBED是直角梯形.

此时∠APQ =90°.

由△AQP ∽△ABC,得

. 解得.                                                

(4)

[注:①点PCA运动,DE经过点C

方法一、连接QC,作QGBC于点G,如图6.

,得,解得

方法二、由,得,进而可得

,得,∴.∴

②点PAC运动,DE经过点C,如图7.

]

试题详情

26.(2009年河北省)(本小题满分12分)

如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着PQ的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点PQ同时出发,当点Q到达点B时停止运动,点P也随之停止.设点PQ运动的时间是t秒(t>0).

(1)当t = 2时,AP =    ,点QAC的距离是   

(2)在点PCA运动的过程中,求△APQ的面积S

t的函数关系式;(不必写出t的取值范围)

(3)在点EBC运动的过程中,四边形QBED能否成

为直角梯形?若能,求t的值.若不能,请说明理由;

(4)当DE经过点C 时,请直接写出t的值.

试题详情


同步练习册答案