0  418099  418107  418113  418117  418123  418125  418129  418135  418137  418143  418149  418153  418155  418159  418165  418167  418173  418177  418179  418183  418185  418189  418191  418193  418194  418195  418197  418198  418199  418201  418203  418207  418209  418213  418215  418219  418225  418227  418233  418237  418239  418243  418249  418255  418257  418263  418267  418269  418275  418279  418285  418293  447090 

2.6 生物作图及曲线分析

   生物作图在近些年的高考试题中经常出现,对能力要求比较高,要求学生会从数形中提炼出有用的信息。教师在平时的教学中,可以结合生物学知识解决一些难以理解的、比较抽象的图形和曲线。

例6:有一种酶催化反应P+Q→R,右图中的实线表示没有酶时此反应的进程。在t1时,将催化此反应的酶加入反应混合物中。右图中的哪条线能表示此反应的真实进程(图中[P]、[Q]和[R]分别代表化合物P、Q和R的浓度)?(   )

  A、Ⅰ   B、Ⅱ   C、Ⅲ   D、Ⅳ   E、Ⅴ

解析:A、B和D都不对。酶作为催化剂不能改变化学反应的平衡点即平衡常数(Keq=[R] /[P][Q]),只能缩短达到平衡的时间。图中实线平行于横坐标的线段延长相交于纵坐标的那个交点即为此反应的Keq。Ⅰ,Ⅱ和Ⅳ三条线显然都改变了此平衡点。C正确:线Ⅲ反映了加酶后缩短了达到平衡点的时间而不改变原反应的平衡点。E不对:曲线Ⅴ从t1至平衡前的线段不符合加酶后的真实进程。

3  生物教学中数学建模的意义

   高中生物学科中涉及到的数学建模远不及这些,限于篇辐,本文在此只作简要的归纳。我们知道,实际问题是复杂多变的,数学建模需要学生具有一定的探索性和创造性。在教学过程中,充分的运用它能很好的解决一些生物学实际问题,使学生对生物学产生更大的兴趣。生命科学作为一门自然科学,其理论的深入研究必定会涉及到很多数学的问题。在生物学教学中,构建数学模型正是联系数学与生命科学的桥梁。如何将生物学理论知识转化为数学模型,这是对学生创造性地解决问题的能力的检验,也是理科教育的重要任务。

试题详情

2. 5 生态系统的数学模型

   生态学的一般规律中,常常求助于数学模型的研究,理论生态学中涉及到大量的数学模型构建的问题。在高中生物学中有种群的动态模型研究,如:“J”与“S”型曲线;另外,种间竞争及捕食的数学模型等等。

例5:在实验室中进行了两类细菌竞争食物的实验。在两类细菌的混合培养液中测定了第Ⅰ类细菌后一代(即Zt+1)所占总数的百分数与前一代(即Zt)所占百分数之间的关系。在下图中,实线表示观测到的Zt+1和Zt之间的关系,虚线表示Zt+1=Zt时的情况。从长远看,第Ⅰ类和第Ⅱ类细菌将会发生什么情况?(   )

A、第Ⅰ类细菌与第Ⅱ类细菌共存

B、两类细菌共同增长

C、第Ⅰ类细菌把第Ⅱ类细菌从混合培养液中排除掉

D、第Ⅱ类细菌把第Ⅰ类细菌从混合培养液中排除掉

解析:两类细菌在实验条件下,同一环境中不存在其他生物因素的作用时,竞争的结果是一种生物生存下来,另一种被淘汰现象。从上述图形的对角线(虚线)上可以看出在虚线上任取一点作横坐标与纵坐标得到的是相同的数据,这说明了同种细菌后一代与前一代在混合培养液中的比例没有变化,说明它们之间是共存的,不是竞争关系。而实线位于虚线下方,用同样的方法不难得出,第Ⅰ类细菌的后一代含量比前一代含量减少了,在竞争中是劣势的种群。本题答案为D。

试题详情

2. 4 概率的计算

   高中生物的遗传机率的计算是教学的难点,教师通过对具体实例的解析,协助学生构建概率相加与相乘原理。比如:分类用概率相加原理;分步用概率相乘原理。

例4:A a B b×A a B B相交子代中基因型a a B B所占比例的计算。

解析:因为A a×A a相交子代中a a基因型个体占1/4,B b×B B相交子代中B B基因型个体占1/2,所以a a B B基因型个体占所有子代的1/4×1/2=1/8。[由概率分步相乘原理,可知子代个别基因型所占比例等于该个别基因型中各对基因型出现概率的乘积]。

试题详情

2.3 数学归纳法的应用

   在平时的教学中,教师要善于从已有的知识过渡到新知识,诠释新知识与已有知识的内在联系与区别,以利于学生进行同化学习。教师通过对一些实例分析、协助学生归纳出一般的规律并构建数学模型。学生通过上位学习,把数学中的相关知识融入到生物学科中来,做到举一反三。然后通过运用新规律,进一步检验、巩固新知识,并实现知识的正迁移。

例3:若让某杂合子连续自交,能表示自交代数和纯合子比例关系是(   )

解析:假设此杂合子的基因型为Aa、采用数学归纳法对杂合子自交的后代概率进行推算(一般学生都会)。自交第一代的杂合子概率为1/2,纯合子的概率为1/2(显、隐性纯合子),自交第二代的杂合子概率为(1/2)2……自交第N代的杂合子概率为(1/2)N,而纯合子则为1-(1/2)N,然后再构建数学曲线模型。本题答案为D。

试题详情

2.2 排列与组合的应用

   排列与组合作为高中数学的重要知识。在减数分裂过程中,减Ⅰ分裂(中期)的同源染色体在细胞中央的不同排列方式,在细胞两极出现不同的染色体组合,最终形成不同基因组成的配子,这是遗传的分离定律与自由组合定律细胞学证据。同样,遗传信息的传递与表达过程中,也涉及到碱基的排列与密码子的组合方式。因此,教师在教学中,从具体的实例出发,结合排列与组合知识,解决生物学上的一些疑难问题。

例2:果蝇的合子有8个染色体,其中4个来自母本(卵子),4个来自父本(精子)。当合子变为成虫时,成虫又产生配子(卵子或精子,视性别而定)时,在每一配子中有多少染色体是来自父本的,多少个是来自母本的?(   )

A、4个来自父本,4个来自母本

B、卵子中4个来自母本,精子中4个来自父本

C、1个来自一个亲本,3个来自另一亲本

D、0、1、2、3或4个来自母本,4、3、2、1或0来自父本(共有5种可能)

解析:染色体在形成配子时完全是独立分配的,因为在同源染色体发生联会后,二价体在赤道板上的排列方位是完全随机的,因此每个配子所得到的4个染色体也是完全随机的。每个配干所得到的一套染色体有可能是五种组合中的一种,实际上每种组合又会有不同的情况。如将这4对染色体分别命名为 m1(母源来的第一染色体)以及 m2、m3、m4和p1(父源来的第一染色体)、p2、p3和p4。那么上述情况下,配子有可能是:m1  m2  m3  m 4;m1  p2   p3  p4;m2  p1   p3  p4;m3  p1   p2  p4  ……p1  p2   p3  p4。因此,当我们不仅考虑数量,而且也考虑到质量时,4对染色体的配子组合数应为24=16。在只考虑数量时,此题答案为D。

试题详情

2.1 数形结合思想的应用

   生物图形与数学曲线相结合的试题是比较常见的一种题型。它能考查学生的分析、推理与综合能力。这类试题从数形结合的角度,考查学生用数学图形来表述生物学知识,体现理科思维的逻辑性。

例1:下图1表示某种生物细胞分裂的不同时期与每条染色体DNA含量变化的关系;图2表示处于细胞分裂不同时期的细胞图像。以下说法正确的是(   )

A、图2中甲细胞处于图1中的BC段,图2中丙细胞处于图1中的DE段

B、图1中CD段变化发生在减数Ⅱ后期或有丝分裂后期

C、就图2中的甲分析可知,该细胞含有2个染色体组,秋水仙素能阻止其进一步分裂

D、图2中的三个细胞不可能在同一种组织中出现

  解析:这是一道比较典型的数形结合题型:从图2上的染色体形态不难辨别甲为有丝分裂后期、乙为减Ⅱ后期和丙为减Ⅱ中期;而图1中的AB段表示的是间期中的(S期)正在进行DNA复制的过程,BC段表示的是存在姐妹染色单体(含2个DNA分子)的染色体,DE段表示的是着丝点断裂后的只含1个DNA的染色体。此题的答案是B。

试题详情

10.客观性题的解题方法:选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。

下面通过实例介绍常用方法。examda

 (1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

 (2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

 (3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

 (4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

 (5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

 (6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。

试题详情

9、几何变换法:在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

 几何变换包括:(1)平移;(2)旋转;(3)对称。

试题详情

8、等(面或体)积法:平面(立体)几何中讲的面积(体积)公式以及由面积(体积)公式推出的与面积(体积)计算有关的性质定理,不仅可用于计算面积(体积),而且用它来证明(计算)几何题有时会收到事半功倍的效果。运用面积(体积)关系来证明或计算几何题的方法,称为等(面或体)积法,它是几何中的一种常用方法。

 用归纳法或分析法证明几何题,其困难在添置辅助线。等(面或体)积法的特点是把已知和未知各量用面积(体积)公式联系起来,通过运算达到求证的结果。所以用等(面或体)积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

试题详情

7、反证法:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。

 用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

 反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

 归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

试题详情


同步练习册答案