0  418408  418416  418422  418426  418432  418434  418438  418444  418446  418452  418458  418462  418464  418468  418474  418476  418482  418486  418488  418492  418494  418498  418500  418502  418503  418504  418506  418507  418508  418510  418512  418516  418518  418522  418524  418528  418534  418536  418542  418546  418548  418552  418558  418564  418566  418572  418576  418578  418584  418588  418594  418602  447090 

右图是“我国某地区气象灾害成因示意图”,读图完成3-4题。

3.图中甲、乙、丙气象灾害分别是

A.春旱、寒潮、沙尘暴

B.寒潮、台风、沙尘暴

C.伏旱、暴雪、沙尘暴

D.伏旱、洪涝、冻害

4.该地区最有可能是

A.青藏高原       B.东北平原

C.华北平原        D.东南丘陵

试题详情

2.下列全球变暖对人类活动影响的叙述,正确的是

A.有利于航海事业的发展

 B.会抑制疾病的发病率

 C.对海洋生态系统影响很小

D.将使世界干旱、半干旱地区的土地荒漠化问题更加突出

试题详情

1.读下图,图中“*”表示人口年龄构成状况,其中0-14岁人口的比重约是

A.93%      B.23%

C.13%      D.60%

试题详情

4.进位值

我们常见的数字都是十进制数,比如一般的数值计算,但是并不是生活中的每一种数字都是十进制的。比如时间和角度的单位是六十进制,电子计算机的指令用的是二进制,早先的计算机的用的是十六进制的。

试题详情

3.排序

(1)直接插入排序

插入排序的思想就是读一个,排一个。将数组的第1个数据放入数组的第1个位置,以后读入的数据与已存入数组的数据进行比较,确定它按从大到小(从小到大)的排列中排在正确的位置。将该位置以及以后的元素向后推移一个位置,将读入的新数填到空出的位置即可。

(2)冒泡排序

以从大到小为例:依次比较相邻的两个数,把大的放前面,小的放后面。即首先比较第1个数和第2个数,大数放前,小数放后;然后比较完成第2个数和第3个数;......;直到比较完了最后两个数。第一趟排序结束,最小的一定沉到最后。重复上过程,仍从第1个数开始,到最后第2个数...... 由于在排序过程中总是大数往前,小数往后,相当气泡上升,所以叫冒泡排序。

试题详情

2.我们以这个5次多项式函数为例加以说明,设:

f(x)=a5x5+a4x4+a3x3+a2x2+a1x+a0

首先,让我们以5次多项式一步步地进行改写:

f(x)=(a5x4+a4x3+a3x2+a2x+a1)x+a0

=((a5x3+a4x2+ a3x+a2)x+a1)x+a0

=(((a5x2+a4x+ a3)x+a2)x+a1)x+a0

=((((a5x+a4)x+ a3)x+a2)x+a1)x+a0

上面的分层计算。只用了小括号,计算时,首先计算最内层的括号,然后由里向外逐层计算,直到最外层的括号,然后加上常数项即可。

 

试题详情

1.求最大公约数

(1)辗转相除法

程序框图与程序语句

程序:

INPUT “m,n=”;m,n

DO

r=m MOD n

m=n

n=r

LOOP UNTIL r=0

PRINT   

END

(2)更相减损术

更相减损术程序:

INPUT “请输入两个不相等的正整数”;a,b

i=0

WHILE a MOD 2=0 AND b MOD 2=0

a=a/2

b=b/2

i=i+1

WEND

DO

IF b<a THEN

t=a

a=b

b=t

END IF

c=a-b

a=b

b=c

LOOP UNTIL a=b

PRINT a^i

END

对于两个正整数如何选择合适的方法求他们的最大公约数

方法
适用范围及特点
短除法
适合两个较小的正整数或两个质因数较少的正整数,简便易操作。
穷举法
适合计算机操作,但一一验证过于繁琐。
辗转相除法
适用于两个较大的正整数,以除法为主,辗转相除法计算次数相对较少,特别当两个数字大小差别较大时计算次数较明显。
 
更相减损术
适用于两个较大的正整数,更相减损术以减法为主,计算次数上相对于辗转相处法较多。

试题详情

6]   -3    0    15

[-3   6]    0    15

[-3   0    6]   15

[-3   0    6    15]

用冒泡排序法排序:

6
 
6
 
6
 
6
 
6
 
6
 
6
 
15
 
15
 
15
-3
 
-3
 
0
 
0
 
0
 
15
 
15
 
6
 
6
 
6
0
 
0
 
-3
 
15
 
15
 
0
 
0
 
0
 
0
 
0
15
 
15
 
15
 
-3
 
-3
 
-3
 
-3
 
-3
 
-3
 
-3

题型4:进位值

例7.把十进制数89化为三进制数,并写出程序语句.

解析:具体的计算方法如下:

89=3×29+2

29=3×9+2

9=3×3+0

3=3×1+0

1=3×0+1

所以:89(10)=1011001(3)

点评:根据三进制数满三进一的原则,可以用3连续去除89及其所的得的商,然后按倒序的先后顺序取出余数组成数据即可。

例8.将8进制数314706(8)化为十进制数,并编写出一个实现算法的程序。

解析:314706(8)=3×85+1×84+4×83+7×82+0×81+6×80=104902。

所以,化为十进制数是104902。

点评:利用把k进制数转化为十进制数的一般方法就可以把8进制数314706(8)化为十进制数,然后根据该算法,利用GET函数,应用循环结构可以设计程序。

试题详情

题型1:求最大公约数

例1.(1)用辗转相除法求123和48的最大公约数?

(2)用更相减损来求80和36的最大公约数?

解析:(1)辗转相除法求最大公约数的过程如下:(建立带余除式)

 123=2×48+27

 48=1×27+21

 27=1×21+6

 21=3×6+3

 6=2×3+0

最后6能被3整除,得123和48的最大公约数为3。

(2)分析:我们将80作为大数,36作为小数,执行更相减损术来求两数的最大公约数。执行结束的准则是减数和差相等。

更相减损术:

因为80和36都是偶数,要去公因数2。

80÷2=40,36÷2=18;

40和18都是偶数,要去公因数2。

40÷2=20,18÷2=9

下面来求20与9的最大公约数,

20-9=11

11-9=2

9-2=7

7-2=5

5-2=3

3-2=1

2-1=1

可得80和36的最大公约数为22×1=4。

点评:对比两种方法控制好算法的结束,辗转相除法是到达余数为0,更相减损术是到达减数和差相等。

例2.设计一个算法,求出840与1764的最大公因数。

解析:我们已经学习过了对自然数的素因数分解的方法,下面的算法就是在此基础上设计的。

解题思路如下:

首先对两个数进行素因数分解:

840=23×3×5×7,1764=22×32×72

其次,确定两个数的公共素因数:2,3,7。

接着确定公共素因数的指数:对于公共素因数2,840中为23,1764中为22,应取较少的一个22,同理可得下面的因数为3和7。

算法步骤:

第一步:将840进行素数分解23×3×5×7;

第二步:将1764进行素数分解22×32×72

第三步:确定它们的公共素因数:2,3,7;

第四步:确定公共素因数2,3,7的指数分别是:2,1,1;

第五步:最大公因数为22×31×71=84。

点评:质数是除1以外只能被1和本身整除的正整数,它应该是无限多个,但是目前没有一个规律来确定所有的质数。

题型2:秦九韶算法

例3.(2005北京,14)已知n次多项式,如果在一种算法中,计算(k=2,3,4,…,n)的值需要k-1次乘法,计算的值共需要9次运算(6次乘法,3次加法),那么计算的值共需要        次运算。下面给出一种减少运算次数的算法:(k=0, 1,2,…,n-1).利用该算法,计算的值共需要6次运算,计算的值共需要     次运算。

答案:65;20。

点评:秦九韶算法适用一般的多项式f(x)=anxn+an-1xn-1+….+a1x+a0的求值问题。直接法乘法运算的次数最多可到达,加法最多n次。秦九韶算法通过转化把乘法运算的次数减少到最多n次,加法最多n次。

例4.已知多项式函数f(x)=2x5-5x4-4x3+3x2-6x+7,求当x=5时的函数的值。

解析:把多项式变形为:f(x)= 2x5-5x4-4x3+3x2-6x+7

=((((2x-5)x-4)x+3)x-6)x+7

计算的过程可以列表表示为:

多项式x系数
2
-5
-4
3
-6
7
运算
运算所得的值

10
25
105
540
2670
+
变形后x的"系数"
2
5
21
108
534
2677
*5

最后的系数2677即为所求的值。

算法过程:

v0=2

v1=2×5-5=5

v2=5×5-4=21

v3=21×5+3=108

v4=108×5-6=534

v5=534×5+7=2677

点评:如果多项式函数中有缺项的话,要以系数为0的项补齐后再计算。

题型三:排序

例4.试用两种排序方法将以下8个数:7,1,3,12,8,4,9,10。按照从大到小的顺序进行排序。

解析:可以按照直接插入排序和冒泡排序这两种方法的要求,结合图形,分析写出。

直接插入法排序:

7]  1  3  12  8  4  9  10

[7  1]  3  12  8  4  9  10

[7  3  1]  12  8  4  9  10

[12  7  3   1]  8  4  9  10

[12  8  7   3  1]  4  9  10

[12  8  7   4   3  1]  9  10

[12  9  8   7   4  3  1]  10

[12  10  9   8   7   4  3  1] 

冒泡排序

7
 
7
 
7
 
7
 
7
 
7
 
7
 
7
1
1
3
 
3
 
3
 
3
 
3
 
3
3
3
1
 
12
 
12
 
12
 
12
 
12
12
12
12
 
1
 
8
 
8
 
8
 
8
8
8
8
 
8
 
1
 
4
 
4
 
4
4
4
4
 
4
 
4
 
1
 
9
 
9
9
9
9
 
9
 
9
 
9
 
1
 
10
10
10
10
 
10
 
10
 
10
 
10
 
 

第一趟

7
 
7
 
12
 
12
 
12
 
12
3
 
12
 
8
 
8
 
9
 
10
12
 
8
 
7
 
9
 
10
 
9
8
 
4
 
9
 
10
 
8
 
8
4
 
9
 
10
 
7
 
7
 
7
9
 
10
 
4
 
4
 
4
 
4
10
 
3
 
3
 
3
 
3
 
3
1
 
1
 
1
 
1
 
1
 
1

第2趟  第3趟   第4趟   第5趟  第6趟

点评:直接插入法和冒泡法排序是常见的排序方法,通过该例,我们对比可以发现,直接插入排序比冒泡排序更有效一些,执行的操作步骤更少一些。

例6.给出以下四个数:6,-3,0,15,用直接插入法排序将它们按从小到大的顺序排列,用冒泡法将它们按从大到小的顺序排列。

分析:不论从大到小的顺序还是按从大到小的顺序,都可按两种方法的步骤进行排序。

解析:

直接插入排序法:

试题详情

4.进位制

(1)概念

进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制。现在最常用的是十进制,通常使用10个阿拉伯数字0-9进行记数。

对于任何一个数,我们可以用不同的进位制来表示。比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的。

一般地,若k是一个大于一的整数,那么以k为基数的k进制可以表示为:

而表示各种进位制数一般在数字右下脚加注来表示,如111001(2)表示二进制数,34(5)表示5进制数。

(2)进位制间的转换

关于进位制的转换,教科书上以十进制和二进制之间的转换为例讲解,并推广到十进制和其它进制之间的转换。这样做的原因是,计算机是以二进制的形式进行存储和计算数据的,而一般我们传输给计算机的数据是十进制数据,因此计算机必须先将十进制数转换为二进制数,再处理,显然运算后首次得到的结果为二进制数,同时计算机又把运算结果由二进制数转换成十进制数输出。

非十进制数转换为十进制数比较简单,只要计算下面的式子值即可:

第一步:从左到右依次取出k进制数各位上的数字,乘以相应的k的幂,k的幂从n开始取值,每次递减1,递减到0,即

第二步:把所得到的乘积加起来,所得的结果就是相应的十进制数。

十进制数转换成非十进制数

把十进制数转换为二进制数,教科书上提供了“除2取余法”,我们可以类比得到十进制数转换成k进制数的算法“除k取余法”。

非十进制之间的转换

一个自然的想法是利用十进制作为桥梁。教科书上提供了一个二进制数据与16进制数据之间的互化的方法,也就是先有二进制数转化为十进制数,再由十进制数转化成为16进制数。

试题详情


同步练习册答案