0  418453  418461  418467  418471  418477  418479  418483  418489  418491  418497  418503  418507  418509  418513  418519  418521  418527  418531  418533  418537  418539  418543  418545  418547  418548  418549  418551  418552  418553  418555  418557  418561  418563  418567  418569  418573  418579  418581  418587  418591  418593  418597  418603  418609  418611  418617  418621  418623  418629  418633  418639  418647  447090 

13. 证明: 四边形和四边形都是正方形

试题详情

12.证明:(1)在

(2).又

试题详情

11.

解:(1)如图1;

(2)如图2;

(3)4.    (8分)

试题详情

10. 证明:

.、)

.    (6分

试题详情

9. 证明: AC∥DE, BC∥EF,又AC=DE, ∴AB=DF  ∴AF=BD

试题详情

8. 证明:(1)①

·················································································································· 3分

②由

分别是的中点,························································· 4分

,即为等腰三角形······································································ 6分

(2)(1)中的两个结论仍然成立.············································································· 8分

(3)在图②中正确画出线段

由(1)同理可证

都是顶角相等的等腰三角形······································· 10分

  12分

试题详情

7. (Ⅰ)证明  将△沿直线对折,得△,连

则△≌△.   ························································································· 1分

又由,得 .  ········································· 2分

. ··································································································· 3分

∴△≌△.   ···························································································· 4分

.····························································· 5分

∴在Rt△中,由勾股定理,

.即. ························································ 6分

(Ⅱ)关系式仍然成立.  ····························································· 7分

证明  将△沿直线对折,得△,连

则△≌△. ···················································· 8分

又由,得

.  ································································································ 9分

∴△≌△

. 

∴在Rt△中,由勾股定理,

.即.························································ 10分

试题详情

6. 解:(1)证明:

(2)①是;②是;③否.

②的证明:如图,

③的证明:如图,

.又

,即

试题详情

5. 解:⑴证明:∵AC平分∠MAN,∠MAN=120°,

∴∠CAB=∠CAD=60°,

∵∠ABC=∠ADC=90°,

∴∠ACB=∠ACD=30°,…………1分

∴AB=AD=AC,……………………2分

∴AB+AD=AC。……………………3分

⑵成立。……………………………r…4分

证法一:如图,过点C分别作AM、AN的垂线,垂足分别为E、F。

∵AC平分∠MAN,∴CE=CF.

∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,

∴∠CDE=∠ABC,………………………………………………………………5分

∵∠CED=∠CFB=90°,∴△CED≌△CFB,∴ED=FB,……………………6分

∴AB+AD=AF+BF+AE-ED=AF+AE,由⑴知AF+AE=AC,

∴AB+AD=AC……………………………………………………………………7分

证法二:如图,在AN上截取AG=AC,连接CG.

∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG,…………5分

∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,

∴∠CBG=∠ADC,∴△CBG≌△CDA,……………………………………6分

∴BG=AD,

∴AB+AD=AB+BG=AG=AC,…………………………………………7分

⑶①;………………………………………………………………………8分

.………………………………………………………………………9分

证明:由⑵知,ED=BF,AE=AF,

在Rt△AFC中,,即,

,………………………………………………………………10分

∴AB+AD=AF+BF+AE-ED=AF+AE=2,…………11分

试题详情

4. 证明:(1)证明:方法一:在△ACD和△BCE中,

ACBC

DCA=∠ECB=90°,

DCEC, 

∴ △ACD≌△BCE(SAS). ………………2分

∴ ∠DAC=∠EBC.  ………………………3分

   ∵ ∠ADC=∠BDF, 

   ∴ ∠EBC+∠BDF=∠DAC+∠ADC=90°.

   ∴ ∠BFD=90°. 

AFBE.  …………………………………5分 

方法二:∵ ACBCDCEC

.即tan∠DAC=tan∠EBC. 

∴ ∠DAC=∠EBC.(下略)…………………3分

(2)AFBE.  …………………………………6分 

∵ ∠ABC=∠DEC=30°,∠ACB=∠DCE=90°,

=tan60°.  ……………………7分

∴ △DCA∽△ECB.  …………………………8分

∴ ∠DAC=∠EBC.  …………………………9分

∵ ∠ADC=∠BDF

∴ ∠EBC+∠BDF=∠DAC+∠ADC=90°. 

∴ ∠BFD=90°. 

AFBE.   ……………………………………………………………………10分

试题详情


同步练习册答案