2.系统所受外力的合力虽不为零,但比系统内力小得多,如碰撞问题中的摩擦力、爆炸问题中的重力等外力比起相互作用的内力来小得多,可以忽略不计.
1.系统不受外力或系统所受外力的合力为零.
理综卷中学科间综合命题的渗透程度明显走低,以传统题目翻新的科内综合考查愈显突出.可以预见,动量守恒定律尤其与机械能守恒、能量转化等相关知识的综合应用,仍是今后高考不可回避的考查重点.考查的难点将集中于复杂物理过程的分析、动量守恒条件的判定,参与作用的物体系统(研究对象)灵活选取等方面.
6.如图6-13所示,A、B、C三物块质量均为m,置于光滑水平台面上.B、C间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A以初速度v0沿B、C连线方向向B运动,相碰后,A与B、C粘合在一起,然后连接B、C的细绳因受扰动而突然断开,弹簧伸展,从而使C与A、B分离,脱离弹簧后C的速度为v0.
(1)求弹簧所释放的势能ΔE.
(2)若更换B、C间的弹簧,当物块A以初速v向B运动,物块C在脱离弹簧后的速度为2v0,则弹簧所释放的势能ΔE′是多少?
(3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C在脱离弹簧后的速度仍为2v0,A的初速度v应为多大?
5.如图6-12(A)所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态.现将l2线剪断,求剪断瞬时物体的加速度.
(1)下面是某同学对该题的一种解法:
解:设l1线上拉力为T1,l2线上拉力为T2,重力为mg,物体在三力作用下保持平衡:
T1cosθ=mg,T1sinθ=T2,T2=mgtanθ
剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以
加速度a=gtanθ,方向在T2反方向.
你认为这个结果正确吗?请对该解法作出评价并说明理由.
(2)若将图A中的细线l1改为长度相同、质量不计的轻弹簧,如图6-12(B)所示,其他条件不变,求解的步骤与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.
4.如图6-11所示,轻质弹簧原长L,竖直固定在地面上,质量为m的小球从距地面H高处由静止开始下落,正好落在弹簧上,使弹簧的最大压缩量为x,在下落过程中,空气阻力恒为f,则弹簧在最短时具有的弹性势能为Ep=________.
3.如图6-10所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中
A.动量守恒,机械能守恒
B.动量不守恒,机械能不守恒
C.动量守恒,机械能不守恒
D.动量不守恒,机械能守恒
2.一轻质弹簧,上端悬挂于天花板,下端系一质量为M的平板,处在平衡状态.一质量为m的均匀环套在弹簧外,与平板的距离为h,如图6-9所示.让环自由下落,撞击平板.已知碰后环与板以相同的速度向下运动,使弹簧伸长.
A.若碰撞时间极短,则碰撞过程中环与板的总动量守恒
B.若碰撞时间极短,则碰撞过程中环与板的总机械能守恒
C.环撞击板后,板的新的平衡位置与h的大小无关
D.在碰后板和环一起下落的过程中,它们减少的动能等于克服弹簧力所做的功
1.如图6-8所示,小球在竖直力F作用下将竖直弹簧压缩,若将力F撤去,小球将向上弹起并离开弹簧,直到速度变为零为止,在小球上升的过程中
A.小球的动能先增大后减小
B.小球在离开弹簧时动能最大
C.小球的动能最大时弹性势能为零
D.小球的动能减为零时,重力势能最大
图6-8 图6-9
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:Wk=-(kx22-kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式Ep=kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.
●歼灭难点训练
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com