148. 矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起, 使点A在平面BCD上的射影A′落在BC上,求二面角A-BC--C的大小。 这是一道由平面图形折叠成立体图形的问题,解决问题的关键在 于搞清折叠前后“变”与“不变”。结果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA、OE与BD的垂直关系不变。但OA与OE此时变成相交两线段并确定一平面,此平面必与棱垂直。由特征Ⅱ可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角。另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了优质服务。事实上,AO=AB·AD/BD=3*4/5=12/5,OA′=OE=BO·tgc∠CBD,而BO=AB2/BD=9/5, tg∠CBD,故OA′=27/20。在Rt△AA′O中,∠AA′O=90°所以cos∠AOA′=A′O/AO=9/16,ty∠AOA′=arccos9/16即所求的二面arccos9/16。 149. 将边长为的正方形沿对角线折起,使得,则三棱锥-的体积为 ( )
A. B. C. D.
D
解析:取BD的中点为O,BD⊥平面OAC,,则=。选D
147. 已知Rt△ABC的两直角边AC=2,BC=3,P为斜边上一 点,沿CP将此直角三角形折成直二面角A-CP-B,当AB=71/2时,求二面角P-AC-B的大小。 作法一:∵A-CP-B为直角二面角, ∴过B作BD⊥CP交CP的延长线于D,则BD⊥DM APC。 ∴过D作DE ⊥AC,垂足为E,连BE。 ∴∠DEB为二面角A-CP-B的平面角。 作法二:过P点作PD′⊥PC交BC于D′,则PD′⊥面APC。 ∴过D′作D′E′⊥AC,垂足为E′,边PE′, ∴∠D′E′P为二面角P-AC-B的平面角。
146. 如图,在梯形ABCD中,AD//BC,ABC=900,AB=a,AD=3a,sinADC=,又PA⊥平面ABCD,PA=a,求二面角P-CD-A的大小。(答案:arctg)
145. 如图,平行六面体ABCD-A1B1C1D1的底面为正方形,点A1在底面的射影O在AB上,已知侧棱A1A与底面ABCD成450角,A1A=a。求二面角A1-AC-B的平面角的正切值。(答案:)
144. 如图,梯形ABCD中,BA⊥AD,CD⊥AD,AB=2,CD=4,P为平面ABCD外一点,平面PAD⊥平面ABCD,△PBC是边长为10的正三角形,求平面PAD与面PBC所成的角.
解法一:如图,延长DA、CB交于E,==,∴AB是△ECD的中位线,CB=BE=10.又△PCB为正△,易证△PCE为直角三角形,PE⊥PC.又平面PDA⊥平面ABCD,且CD⊥交线DA,∴CD⊥平面PDE.PE是PC在平面PDE内的射影,∴PE⊥PD(三垂线定理的逆定理).故∠CPD是D-PE-C的平面角.在Rt△CDP中,sin∠DPC==,故二面角大小为arcsin.
解法二:利用Scosθ=S′.如右图,
平面PAD⊥平面ABCD
CD⊥AD,BA⊥AD
BA⊥平面PAD
CD⊥平面PAD
△PAD是△PBC在平面PDA内的射影.设面PDA与面PCB所成的二面角为θ,则S△PDA=S△PCB·cosθ.Rt△PAB中,PA=4=AD;Rt△PDC中,PD=2.
∴△PAD为等腰三角形且S△PAD=PD·AH=15.
cosθ===,
θ=arccos=.
143. 如图,在平面角为600的二面角-l-内有一点P,P到、分别为PC=2cm,PD=3cm,则垂足的连线CD等于多少?(2)P到棱l的距离为多少?
解析:对于本题若这么做:过C在平面内作棱l的垂线,垂足为E,连DE,则CED即为二面角的平面角。这么作辅助线看似简单,实际上在证明CED为二面角的平面角时会有一个很麻烦的问题,需要证明P、D、E、C四点共面。这儿,可以通过作垂面的方法来作二面角的平面角。
解:∵PC、PD是两条相交直线,
∴PC、PD确定一个平面,设交棱l于E,连CE、DE。
∵PC⊥, ∴PC⊥l,
又∵PD⊥,∴PD⊥l。
∴l⊥平面,则l⊥CE、DE,故CED即为二面角的平面角,即CED=600。
∴CPD=1200,△PCD中,PD=3,PC=2,由余弦定理得CD=cm。由PD⊥DE,PC⊥CE可得P、D、E、C四点共圆,且PE为直径,由正弦定理得PE=2R===cm。
说明:三垂线定理及其逆定理是作二面角的平面角的最主要的方法,要引起重视。
142. 如图,ABCD-A1B1C1D1是正方体,E是CC1的中点,求二面角B-B1E-D的余弦值。
解析:图中二面角的二个半平面分别为△DEB1所在的半平面和△BEB1所在的半平面,即正方体的右侧面,它们的交线即二面角的棱B1E。不难找到DC即为从其中的一个半平面出发,并且垂直于另一个半平面的直线。
解: 由题意可得直线DC平面BEB1,且垂足为C,过C作CFB1E于F(如图,F在B1E的延长线上),连DF,则由三垂线定理可得DFC即二面角的平面角。
△B1C1E~△CFE,∴CF=;DF=
∴cosDFC=。
即二面角的平面角的余弦值为。
141. 已知菱形ABCD边长为a,且其一条对角线BD=a,沿对角线BD将折起所在平面成直二面角,点E、F分别是BC、CD的中点。
(1)求AC与平面AEF所成的角的余弦值
(2)求二面角A-EF-B的正切值。
(1) 解析::菱形ABCD的对角线,
,中位线EF//BD,可知面AOC,,故面,这样AC在面AEF内的射影就是AG,就是AC与平面AEF的成角,解三角形AOC可得。
(2)分析:由前一小问的分析可知,
就是二面角A-EF-B的平面角,在中,,,。
140. 三棱柱ABC-A1B1C1中,BAC=900,AB=BB1=1,直线B1C与平面ABC成300角,求二面角B-B1C-A的正弦值。
解析:可以知道,平面ABC与平面BCC1B1垂直,故可由面面垂直的性质来寻找从一个半平面到另一个半平面的垂线。
解:由直三棱柱性质得平面ABC平面BCC1B1,过A作AN平面BCC1B1,垂足为N,则AN平面BCC1B1,(AN即为我们要找的垂线)在平面BCB1内过N作NQ棱B1C,垂足为Q,连QA,则NQA即为二面角的平面角。
∵AB1在平面ABC内的射影为AB,CAAB,∴CAB1A,AB=BB1=1,得AB1=。∵直线B1C与平面ABC成300角,∴B1CB=300,B1C=2,Rt△B1AC中,由勾股定理得AC=,∴AQ=1。在Rt△BAC中,AB=1,AC=,得AN=。
sinAQN==。即二面角B-B1C-A的正弦值为。
139. 在三棱锥P-ABC中, APB=BPC=CPA=600,求二面角A-PB-C的余弦值。
解析:在二面角的棱PB上任取一点Q,在半平面PBA和半平面PBC上作QMPB,QNPB,则由定义可知MQN即为二面角的平面角。
设PM=a,则在RtPQM和RtPQN中可求得QM=QN=a;
又由PQNPQM得PN=a,故在正PMN中MN=a,在MQN中由余弦定理得cosMQN=,即二面角的余弦值为。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com