0  420237  420245  420251  420255  420261  420263  420267  420273  420275  420281  420287  420291  420293  420297  420303  420305  420311  420315  420317  420321  420323  420327  420329  420331  420332  420333  420335  420336  420337  420339  420341  420345  420347  420351  420353  420357  420363  420365  420371  420375  420377  420381  420387  420393  420395  420401  420405  420407  420413  420417  420423  420431  447090 

2. (1) ∵A,B两点的坐标分别是A(10,0)和B(8,),

    ∴

    ∴

    当点A´在线段AB上时,∵,TA=TA´,

    ∴△A´TA是等边三角形,且

    ∴


 
y
 
E
 
    ∴

x
 
O
 
C
 
T
 
P
 
B
 
A
 
    当A´与B重合时,AT=AB=

    所以此时.

  (2)当点A´在线段AB的延长线,且点P在线段AB(不与B重合)上时,

   纸片重叠部分的图形是四边形(如图(1),其中E是TA´与CB的交点),


 
y
 
x
 
   当点P与B重合时,AT=2AB=8,点T的坐标是(2,0)

   又由(1)中求得当A´与B重合时,T的坐标是(6,0)

P
 
B
 
E
 
   所以当纸片重叠部分的图形是四边形时,.

F
 
C
 
  (3)S存在最大值

A
 
T
 
O
 
   1当时,

   在对称轴t=10的左边,S的值随着t的增大而减小,

∴当t=6时,S的值最大是.

2当时,由图1,重叠部分的面积

∵△A´EB的高是

  

当t=2时,S的值最大是

3当,即当点A´和点P都在线段AB的延长线是(如图2,其中E是TA´与CB的交点,F是TP与CB的交点),

,四边形ETAB是等腰形,∴EF=ET=AB=4,

综上所述,S的最大值是,此时t的值是.

试题详情

1.  解:( 1)由已知得:解得

c=3,b=2

∴抛物线的线的解析式为

(2)由顶点坐标公式得顶点坐标为(1,4)

所以对称轴为x=1,A,E关于x=1对称,所以E(3,0)

设对称轴与x轴的交点为F

所以四边形ABDE的面积=

=

=

=9

(3)相似

如图,BD=

BE=

DE=

所以, 即: ,所以是直角三角形

所以,且,

所以.

试题详情

29. (2008年江苏省无锡市)一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:

(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?

(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?

答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km的正方形城区示意图,供解题时选用)

图1
 
图2
 
图3
 
图4
 

压轴题答案

试题详情

28. (2008年江苏省南通市)已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.

(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.

(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.

(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

试题详情

27. (2008年山东省青岛市)已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:

(1)当t为何值时,PQ∥BC?

(2)设△AQP的面积为y(),求y与t之间的函数关系式;

(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;

(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

试题详情

26. (2008年陕西省)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站.由供水站直接铺设管道到另外两处.

如图,甲,乙两村坐落在夹角为的两条公路的段和段(村子和公路的宽均不计),点表示这所中学.点在点的北偏西的3km处,点在点的正西方向,点在点的南偏西km处.

为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:

方案一:供水站建在点处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;

方案二:供水站建在乙村(线段某处),甲村要求管道建设到处,请你在图①中,画出铺设到点和点处的管道长度之和最小的线路图,并求其最小值;

方案三:供水站建在甲村(线段某处),请你在图②中,画出铺设到乙村某处和点处的管道长度之和最小的线路图,并求其最小值.

综上,你认为把供水站建在何处,所需铺设的管道最短?

试题详情

25. (2008年上海市)已知(如图13).是射线上的动点(点与点不重合),是线段的中点.

(1)设的面积为,求关于的函数解析式,并写出函数的定义域;

(2)如果以线段为直径的圆与以线段为直径的圆外切,求线段的长;

(3)联结,交线段于点,如果以为顶点的三角形与相似,求线段的长.

 

试题详情

24.(2008年大庆市)

如图①,四边形都是正方形,它们的边长分别为(),且点上(以下问题的结果均可用的代数式表示).

(1)求

(2)把正方形绕点按逆时针方向旋转45°得图②,求图②中的

(3)把正方形绕点旋转一周,在旋转的过程中,是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.

 

.

试题详情

23.(天津市2008年)已知抛物线

(Ⅰ)若,求该抛物线与轴公共点的坐标;

(Ⅱ)若,且当时,抛物线与轴有且只有一个公共点,求的取值范围;

(Ⅲ)若,且时,对应的时,对应的,试判断当时,抛物线与轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.

试题详情

22.(2008年四川省宜宾市)已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.

(1)求该抛物线的解析式;

(2)若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;

(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.

(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为)

试题详情


同步练习册答案