0  420239  420247  420253  420257  420263  420265  420269  420275  420277  420283  420289  420293  420295  420299  420305  420307  420313  420317  420319  420323  420325  420329  420331  420333  420334  420335  420337  420338  420339  420341  420343  420347  420349  420353  420355  420359  420365  420367  420373  420377  420379  420383  420389  420395  420397  420403  420407  420409  420415  420419  420425  420433  447090 

22. 解:( 1)由已知得:解得

c=3,b=2

∴抛物线的线的解析式为

(2)由顶点坐标公式得顶点坐标为(1,4)

所以对称轴为x=1,A,E关于x=1对称,所以E(3,0)

设对称轴与x轴的交点为F

所以四边形ABDE的面积=

=

=

=9

(3)相似

如图,BD=

BE=

DE=

所以, 即: ,所以是直角三角形

所以,且,

所以.

试题详情

21.解:

(1)m=-5,n=-3

  (2)y=x+2

(3)是定值.

因为点D为∠ACB的平分线,所以可设点D到边AC,BC的距离均为h,

设△ABC AB边上的高为H,

则利用面积法可得:

(CM+CN)h=MN﹒H

又 H=

化简可得  (CM+CN)﹒

    

试题详情

20. 解:(1)如图,过点B作BD⊥OA于点D.

    在Rt△ABD中,

    ∵∣AB∣=,sin∠OAB=,

    ∴∣BD∣=∣AB∣·sin∠OAB

        =×=3.

又由勾股定理,得

  

     

∴∣OD∣=∣OA∣-∣AD∣=10-6=4.

∵点B在第一象限,∴点B的坐标为(4,3).             ……3分

设经过O(0,0)、C(4,-3)、A(10,0)三点的抛物线的函数表达式为

   y=ax2+bx(a≠0).

∴经过O、C、A三点的抛物线的函数表达式为       ……2分

(2)假设在(1)中的抛物线上存在点P,使以P、O、C、A为顶点的四边形为梯形

  ①∵点C(4,-3)不是抛物线的顶点,

∴过点C做直线OA的平行线与抛物线交于点P1  .

则直线CP1的函数表达式为y=-3.

对于,令y=-3x=4或x=6.

而点C(4,-3),∴P1(6,-3).

在四边形P1AOC中,CP1∥OA,显然∣CP1∣≠∣OA∣.

∴点P1(6,-3)是符合要求的点.                  ……1分

②若AP2∥CO.设直线CO的函数表达式为

  将点C(4,-3)代入,得

∴直线CO的函数表达式为

  于是可设直线AP2的函数表达式为

将点A(10,0)代入,得

∴直线AP2的函数表达式为

,即(x-10)(x+6)=0.

而点A(10,0),∴P2(-6,12).

过点P2作P2E⊥x轴于点E,则∣P2E∣=12.

在Rt△AP2E中,由勾股定理,得

而∣CO∣=∣OB∣=5.

∴在四边形P2OCA中,AP2∥CO,但∣AP2∣≠∣CO∣.

∴点P2(-6,12)是符合要求的点.                    ……1分

③若OP3∥CA,设直线CA的函数表达式为y=k2x+b2

  将点A(10,0)、C(4,-3)代入,得

∴直线CA的函数表达式为

∴直线OP3的函数表达式为

即x(x-14)=0.

而点O(0,0),∴P3(14,7).

过点P3作P3E⊥x轴于点E,则∣P3E∣=7.

在Rt△OP3E中,由勾股定理,得

而∣CA∣=∣AB∣=.

∴在四边形P3OCA中,OP3∥CA,但∣OP3∣≠∣CA∣.

∴点P3(14,7)是符合要求的点.                    ……1分

综上可知,在(1)中的抛物线上存在点P1(6,-3)、P2(-6,12)、P3(14,7),

使以P、O、C、A为顶点的四边形为梯形.                 ……1分

(3)由题知,抛物线的开口可能向上,也可能向下.

 ①当抛物线开口向上时,则此抛物线与y轴的副半轴交与点N.

可设抛物线的函数表达式为(a>0).

如图,过点M作MG⊥x轴于点G.

∵Q(-2k,0)、R(5k,0)、G(、N(0,-10ak2)、M

     

    

                ……2分

②当抛物线开口向下时,则此抛物线与y轴的正半轴交于点N,

  同理,可得                     ……1分

综上所知,的值为3:20.                   ……1分

试题详情

19. 解:(1)在中,令

····················································· 1分

的解析式为···················································································· 2分

(2)由,得  ·························································· 4分

····································································································· 5分

······························································································· 6分

(3)过点于点

····································································································· 7分

················································································································ 8分

由直线可得:

中,,则

····························································································· 9分

·························································································· 10分

··································································································· 11分

此抛物线开口向下,时,

当点运动2秒时,的面积达到最大,最大为.   

试题详情

18. 解:(1)点轴上························································································· 1分

理由如下:

连接,如图所示,在中,

由题意可知:

轴上,轴上.············································································ 3分

(2)过点轴于点

中,

在第一象限,

的坐标为····························································································· 5分

由(1)知,点轴的正半轴上

的坐标为

的坐标为······························································································· 6分

抛物线经过点

由题意,将代入中得

  解得

所求抛物线表达式为:·························································· 9分

(3)存在符合条件的点,点.············································································ 10分

理由如下:矩形的面积

为顶点的平行四边形面积为

由题意可知为此平行四边形一边,

边上的高为2······································································································ 11分

依题意设点的坐标为

在抛物线

解得,

为顶点的四边形是平行四边形,

当点的坐标为时,

的坐标分别为

当点的坐标为时,

的坐标分别为.·················································· 14分

(以上答案仅供参考,如有其它做法,可参照给分)

试题详情

17. 解:(1)直线轴交于点,与轴交于点

······························································································· 1分

都在抛物线上,

 

抛物线的解析式为······························································ 3分

顶点····································································································· 4分

(2)存在····················································································································· 5分

··················································································································· 7分

·················································································································· 9分

(3)存在···················································································································· 10分

理由:

解法一:

延长到点,使,连接交直线于点,则点就是所求的点.

            ··························································································· 11分

过点于点

点在抛物线上,

中,

中,

····················································· 12分

设直线的解析式为

  解得

······································································································ 13分

  解得 

在直线上存在点,使得的周长最小,此时.········· 14分

解法二:

过点的垂线交轴于点,则点为点关于直线的对称点.连接于点,则点即为所求.···················································································· 11分

过点轴于点,则

同方法一可求得

中,,可求得

为线段的垂直平分线,可证得为等边三角形,

垂直平分

即点为点关于的对称点.··················································· 12分

设直线的解析式为,由题意得

  解得

······································································································ 13分

  解得 

在直线上存在点,使得的周长最小,此时.   1

试题详情

16.

解:(1)

(2)当时,过点作,交,如图1,

(3)①能与平行.

,如图2,则

,而

不能与垂直.

,延长,如图3,

,而

不存在.

试题详情

15. 解:(1)解法1:根据题意可得:A(-1,0),B(3,0);

则设抛物线的解析式为(a≠0)

又点D(0,-3)在抛物线上,∴a(0+1)(0-3)=-3,解之得:a=1

 ∴y=x2-2x-3···································································································· 3分

自变量范围:-1≤x≤3···················································································· 4分

      解法2:设抛物线的解析式为(a≠0)

          根据题意可知,A(-1,0),B(3,0),D(0,-3)三点都在抛物线上

          ∴,解之得:

y=x2-2x-3··············································································· 3分

自变量范围:-1≤x≤3······························································ 4分

      (2)设经过点C“蛋圆”的切线CEx轴于点E,连结CM

       在RtMOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=

       在RtMCE中,∵OC=2,∠CMO=60°,∴ME=4

 ∴点CE的坐标分别为(0,),(-3,0) ·················································· 6分

∴切线CE的解析式为··························································· 8分

(3)设过点D(0,-3),“蛋圆”切线的解析式为:y=kx-3(k≠0) ·························· 9分

        由题意可知方程组只有一组解

  即有两个相等实根,∴k=-2············································· 11分

  ∴过点D“蛋圆”切线的解析式y=-2x-3····················································· 12分

试题详情

14. 解:(1)由题意可知,

解,得 m=3.     ………………………………3分

A(3,4),B(6,2);

k=4×3=12.    ……………………………4分

(2)存在两种情况,如图: 

①当M点在x轴的正半轴上,N点在y轴的正半轴

上时,设M1点坐标为(x1,0),N1点坐标为(0,y1).

∵ 四边形AN1M1B为平行四边形,

∴ 线段N1M1可看作由线段AB向左平移3个单位,

再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).

由(1)知A点坐标为(3,4),B点坐标为(6,2),

N1点坐标为(0,4-2),即N1(0,2);    ………………………………5分

M1点坐标为(6-3,0),即M1(3,0).    ………………………………6分

设直线M1N1的函数表达式为,把x=3,y=0代入,解得

∴ 直线M1N1的函数表达式为. ……………………………………8分

②当M点在x轴的负半轴上,N点在y轴的负半轴上时,设M2点坐标为(x2,0),N2点坐标为(0,y2). 

ABN1M1ABM2N2ABN1M1ABM2N2

N1M1M2N2N1M1M2N2.  

∴ 线段M2N2与线段N1M1关于原点O成中心对称.   

M2点坐标为(-3,0),N2点坐标为(0,-2).   ………………………9分

设直线M2N2的函数表达式为,把x=-3,y=0代入,解得

∴ 直线M2N2的函数表达式为.   

所以,直线MN的函数表达式为.  ………………11分

(3)选做题:(9,2),(4,5).  ………………………………………………2分

试题详情

13. 解:(1)分别过DC两点作DGAB于点GCHAB于点H. ……………1分

ABCD, 

DGCHDGCH. 

∴ 四边形DGHC为矩形,GHCD=1. 

DGCHADBC,∠AGD=∠BHC=90°,

∴ △AGD≌△BHC(HL). 

AGBH=3.  ………2分

∵ 在Rt△AGD中,AG=3,AD=5, 

DG=4.                

.    ………………………………………………3分

(2)∵ MNABMEABNFAB, 

MENFMENF. 

∴ 四边形MEFN为矩形. 

ABCDADBC,  

∴ ∠A=∠B. 

MENF,∠MEA=∠NFB=90°,  

∴ △MEA≌△NFB(AAS).

AEBF.     ……………………4分 

AEx,则EF=7-2x.  ……………5分 

∵ ∠A=∠A,∠MEA=∠DGA=90°,  

∴ △MEA∽△DGA

ME.     …………………………………………………………6分

.  ……………………8分

x时,ME<4,∴四边形MEFN面积的最大值为.……………9分

(3)能.   ……………………………………………………………………10分

由(2)可知,设AEx,则EF=7-2xME. 

若四边形MEFN为正方形,则MEEF. 

   即 7-2x.解,得 .  ……………………………………………11分

EF<4. 

∴ 四边形MEFN能为正方形,其面积为

试题详情


同步练习册答案