1、n次方根的定义:如果一个数的n次方a(n>1,n∈N)那么这个数叫做a的n次方根,即x=a,则x叫做a的n次方根(n>1,n∈N)。
3、翻折变换:(1)由y=f(x)得到y=|f(x)|,就是把y=f(x)的图象在x轴下方的部分作关于x轴对称的图象,即把x轴下方的部分翻到x轴上方,而原来x轴上方的部分不变。
(2) 由y=f(x)得到y=f(|x|),就是把y=f(x)的图象在y轴右边的部分作关于y轴对称的图象,即把y轴右边的部分翻到y轴的左边,而原来y轴左边的部分去掉,右边的部分不变。
第五讲 指数函数、对数函数与幂函数
2、伸缩变换:将y=f(x)的横坐标变为原来的a倍,纵坐标变为原来的m倍,得到
即
1、平移变换(向量平移法则):y=f(x)按=(h,k)平移得y=f(x-h)+k,即F(x,y)=0按=(h,k)平移得F(x-h,y-k)=0,当m>0时,向右平移,m<0时,向左平移。当n>0时,向上平移,n<0时向下平移。对于“从y=f(x)到y=f(x-h)+k”是“左加右减,上加下减”,对于平移向量“=(h,k)”是“左负右正,上正下负”。
5、若f(a+x)=f(b-x),则f(x)的图像关于直线对称,
三:图象平移与伸缩变换、翻折变换。
4、类似4有y=f(x)关于直线y=-x+b对称时, f(x)=b-f(b-x)。特别当b=0时,f(x)=-f(-x), f(x)关于直线y=-x对称.
3、y=f(x)关于直线y=x+b对称时,由上面知y=f(x)关于直线y=x+b对称的函数的解析式是y=f(x+b)+b。它与y=f(x)应是同一函数,所以:f(x)=f(x+b)+b。特别当b=0时,f(x)=f(x),即一个函数关于直线y=x对称时,它的反函数就是它本身。
2、y=f(x)关于(a,b)对称时,f(x)=2b-f(2a-x),特别a=b=0时, f(x)=-f(-x),即f(x)关于原点对称,f(x)为奇函数。
1、关于直线x=a对称时,f(x)=f(2a-x)或f(a-x)=f(a+x),特例:a=0时,关于y轴对称,此时 f(x)=f(-x)为偶函数。
6、y=f(x)与y=-f(2a-x)+2b关于点(a,b)对称.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com