13、直线和平面所成的角:(1)定义:平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角。(2)范围:;(3)求法:作出直线在平面上的射影;(4)斜线与平面所成的角的特征:斜线与平面中所有直线所成角中最小的角。如(1)在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,BD=1,则AD与平面AA1C1C所成的角为______(答:arcsin);(2)正方体ABCD-A1B1C1D1中,E、F分别是AB、C1D1的中点,则棱 A1B1 与截面A1ECF所成的角的余弦值是______(答:);(3)是从点引出的三条射线,每两条的夹角都是,则直线与平面所成角的余弦值为______(答:);(4)若一平面与正方体的十二条棱所在直线都成相等的角θ,则sinθ的值为______(答:)。
12、三垂线定理及逆定理:(1)定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。(2)逆定理:在平面内的一条直线,如果它和这个平面的一条斜线,那么它也和这条斜线在平面内的射影垂直。其作用是证两直线异面垂直和作二面角的平面角。
11、直线和平面垂直的判定和性质:(1)判定:①如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线和这个平面垂直。②两条平行线中有一条直线和一个平面垂直,那么另一条直线也和这个平面垂直。(2)性质:①如果一条直线和一个平面垂直,那么这条直线和这个平面内所有直线都垂直。②如果两条直线都垂直于同一个平面,那么这两条直线平行。如(1)如果命题“若∥z,则”不成立,那么字母x、y、z在空间所表示的几何图形一定是_____(答:x、y是直线,z是平面);(2)已知a,b,c是直线,α、β是平面,下列条件中能得出直线a⊥平面α的是 A、a⊥b,a⊥c其中bα,cα B、a⊥b ,b∥α C、α⊥β,a∥β D、a∥b,b⊥α(答:D);(3)AB为⊙O的直径,C为⊙O上的一点,AD⊥面ABC,AE⊥BD于E,AF⊥CD于F,求证:BD⊥平面AEF。
10、直线与平面平行的判定和性质:(1)判定:①判定定理:如果平面内一条直线和这个平面平面平行,那么这条直线和这个平面平行;②面面平行的性质:若两个平面平行,则其中一个平面内的任何直线与另一个平面平行。(2)性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交的交线和这条直线平行。在遇到线面平行时,常需作出过已知直线且与已知平面相交的辅助平面,以便运用线面平行的性质。如(1)α、β表示平面,a、b表示直线,则a∥α的一个充分不必要条件是 A、α⊥β,a⊥β B、α∩β=b,且a∥b C、a∥b且b∥α D、α∥β且aβ(答:D);(2)正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN,求证:MN∥面AA1B1B。
9、直线与平面的位置关系:(1)直线在平面内;(2)直线与平面相交。其中,如果一条直线和平面内任何一条直线都垂直,那么这条直线和这个平面垂直。注意:任一条直线并不等同于无数条直线;(3)直线与平面平行。其中直线与平面相交、直线与平面平行都叫作直线在平面外。如(1)下列命题中,正确的是 A、若直线平行于平面内的一条直线b , 则 // B、若直线垂直于平面的斜线b在平面内的射影,则⊥b C、若直线垂直于平面,直线b是平面的斜线,则与b是异面直线 D、若一个棱锥的所有侧棱与底面所成的角都相等,且所有侧面与底面所成的角也相等,则它一定是正棱锥(答:D);(2)正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总保持AP⊥BD1,则动点P的轨迹是___________(答:线段B1C)。
8、两直线垂直的判定:(1)转化为证线面垂直;(2)三垂线定理及逆定理。
7、两直线平行的判定:(1)公理4:平行于同一直线的两直线互相平行;(2)线面平行的性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交的交线和这条直线平行;(3)面面平行的性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行;(4)线面垂直的性质:如果两条直线都垂直于同一个平面,那么这两条直线平行。
6、异面直线的距离的概念:和两条异面直线都垂直相交的直线叫异面直线的公垂线。两条异面直线的公垂线有且只有一条。而和两条异面直线都垂直的直线有无数条,因为空间中,垂直不一定相交。如(1)ABCD是矩形,沿对角线AC把ΔADC折起,使AD⊥BC,求证:BD是异面直线AD与BC的公垂线;(2)如图,在正方体ABCD-A1B1C1D1中,EF是异面直线AC与A1D的公垂线,则由正方体的八个顶点所连接的直线中,与EF平行的直线有____条(答:1);
5、异面直线所成角的求法:(1)范围:;(2)求法:计算异面直线所成角的关键是平移(中点平移,顶点平移以及补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,以便易于发现两条异面直线间的关系)转化为相交两直线的夹角。如(1)正四棱锥的所有棱长相等,是的中点,那么异面直线与所成的角的余弦值等于____(答:);(2)在正方体AC1中,M是侧棱DD1的中点,O是底面ABCD的中心,P是棱A1B1上的一点,则OP与AM所成的角的大小为____(答:90°);(3)已知异面直线a、b所成的角为50°,P为空间一点,则过P且与a、b所成的角都是30°的直线有且仅有____条(答:2);(4)若异面直线所成的角为,且直线,则异面直线所成角的范围是____(答:);
4、异面直线的判定:反证法。 如(1)“a、b为异面直线”是指:①a∩b=Φ,但a不平行于b;②a面α,b面β且a∩b=Φ;③a面α,b面β且α∩β=Φ;④a面α,b面α ;⑤不存在平面α,能使a面α且b面α成立。上述结论中,正确的是_____(答:①⑤);(2)在空间四边形ABCD中,M、N分别是AB、CD的中点,设BC+AD=2a,则MN与a的大小关系是_____(答:MN<a);(3)若E、F、G、H顺次为空间四边形ABCD四条边AB、BC、CD、DA的中点,且EG=3,FH=4,则AC2+BD2= _____(答:50);(4)如果a、b是异面直线,P是不在a、b上的任意一点,下列四个结论:①过点P一定可以作直线与a、b都相交; ②过点P一定可以作直线与a、b都垂直;③过点P一定可以作平面α与a、b都平行; ④过点P一定可以作直线与a、b都平行。其中正确的结论是_____(答:②);(5)如果两条异面直线称作一对,那么正方体的十二条棱中异面直线的对数为_____(答:24);(6)已知平面求证:b、c是异面直线.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com