6、向量的运算:
(1)几何运算:
①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,那么向量叫做与的和,即;
②向量的减法:用“三角形法则”:设,由减向量的终点指向被减向量的终点。注意:此处减向量与被减向量的起点相同。如(1)化简:①___;②____;③_____(答:①;②;③);(2)若正方形的边长为1,,则=_____(答:);(3)若O是所在平面内一点,且满足,则的形状为____(答:直角三角形);(4)若为的边的中点,所在平面内有一点,满足,设,则的值为___(答:2);(5)若点是的外心,且,则的内角为____(答:);
(2)坐标运算:设,则:
①向量的加减法运算:,。如(1)已知点,,若,则当=____时,点P在第一、三象限的角平分线上(答:);(2)已知,,则 (答:或);(3)已知作用在点的三个力,则合力的终点坐标是 (答:(9,1))
②实数与向量的积:。
③若,则,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。如设,且,,则C、D的坐标分别是__________(答:);
④平面向量数量积:。如已知向量=(sinx,cosx), =(sinx,sinx), =(-1,0)。(1)若x=,求向量、的夹角;(2)若x∈,函数的最大值为,求的值(答:或);
⑤向量的模:。如已知均为单位向量,它们的夹角为,那么=_____(答:);
⑥两点间的距离:若,则。如如图,在平面斜坐标系中,,平面上任一点P关于斜坐标系的斜坐标是这样定义的:若,其中分别为与x轴、y轴同方向的单位向量,则P点斜坐标为。(1)若点P的斜坐标为(2,-2),求P到O的距离|PO|;(2)求以O为圆心,1为半径的圆在斜坐标系中的方程。(答:(1)2;(2));
5、平面向量的数量积:
(1)两个向量的夹角:对于非零向量,,作,
称为向量,的夹角,当=0时,,同向,当=时,,反向,当=时,,垂直。
(2)平面向量的数量积:如果两个非零向量,,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即=。规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。如(1)△ABC中,,,,则_________(答:-9);(2)已知,与的夹角为,则等于____(答:1);(3)已知,则等于____(答:);(4)已知是两个非零向量,且,则的夹角为____(答:)
(3)在上的投影为,它是一个实数,但不一定大于0。如已知,,且,则向量在向量上的投影为______(答:)
(4)的几何意义:数量积等于的模与在上的投影的积。
(5)向量数量积的性质:设两个非零向量,,其夹角为,则:
①;
②当,同向时,=,特别地,;当与反向时,=-;当为锐角时,>0,且不同向,是为锐角的必要非充分条件;当为钝角时,<0,且不反向,是为钝角的必要非充分条件;
③非零向量,夹角的计算公式:;④。如(1)已知,,如果与的夹角为锐角,则的取值范围是______(答:或且);(2)已知的面积为,且,若,则夹角的取值范围是_________(答:);(3)已知与之间有关系式,①用表示;②求的最小值,并求此时与的夹角的大小(答:①;②最小值为,)
4、实数与向量的积:实数与向量的积是一个向量,记作,它的长度和方向规定如下:当>0时,的方向与的方向相同,当<0时,的方向与的方向相反,当=0时,,注意:≠0。
3.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数、,使a=e1+e2。如(1)若
,则______(答:);(2)下列向量组中,能作为平面内所有向量基底的是 A. B. C. D. (答:B);(3)已知分别是的边上的中线,且,则可用向量表示为_____(答:);(4)已知中,点在边上,且,,则的值是___(答:0)
2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,,等;(3)坐标表示法:在平面内建立直角坐标系,以与轴、轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为,称为向量的坐标,=叫做向量的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
1、向量有关概念:
(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知A(1,2),B(4,2),则把向量按向量=(-1,3)平移后得到的向量是_____(答:(3,0))
(2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;
(3)单位向量:长度为一个单位长度的向量叫做单位向量(与共线的单位向量是);
(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;
(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有);④三点共线共线;
(6)相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。
如下列命题:(1)若,则。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若,则是平行四边形。(4)若是平行四边形,则。(5)若,则。(6)若,则。其中正确的是_______(答:(4)(5))
17. 抽象函数:抽象函数通常是指没有给出函数的具体的解析式,只给出了其它一些条件(如函数的定义域、单调性、奇偶性、解析递推式等)的函数问题。求解抽象函数问题的常用方法是:
(1)借鉴模型函数进行类比探究。几类常见的抽象函数 :
①正比例函数型: ---------------;
②幂函数型: --------------,;
③指数函数型: ------------,;
④对数函数型: -----,;
⑤三角函数型: ----- 。如已知是定义在R上的奇函数,且为周期函数,若它的最小正周期为T,则____(答:0)
(2)利用函数的性质(如奇偶性、单调性、周期性、对称性等)进行演绎探究:如(1)设函数表示除以3的余数,则对任意的,都有 A、 B、 C、 D、(答:A);(2)设是定义在实数集R上的函数,且满足,如果,,求(答:1);(3)如设是定义在上的奇函数,且,证明:直线是函数图象的一条对称轴;(4)已知定义域为的函数满足,且当时,单调递增。如果,且,则的值的符号是____(答:负数)
(3)利用一些方法(如赋值法(令=0或1,求出或、令或等)、递推法、反证法等)进行逻辑探究。如(1)若,满足
,则的奇偶性是______(答:奇函数);(2)若,满足
,则的奇偶性是______(答:偶函数);(3)已知是定义在上的奇函数,当时,的图像如右图所示,那么不等式的解集是_____________(答:);(4)设的定义域为,对任意,都有,且时,,又,①求证为减函数;②解不等式.(答:).
16. 函数的应用。(1)求解数学应用题的一般步骤:①审题――认真读题,确切理解题意,明确问题的实际背景,寻找各量之间的内存联系;②建模――通过抽象概括,将实际问题转化为相应的数学问题,别忘了注上符合实际意义的定义域;③解模――求解所得的数学问题;④回归――将所解得的数学结果,回归到实际问题中去。(2)常见的函数模型有:①建立一次函数或二次函数模型;②建立分段函数模型;③建立指数函数模型;④建立型。
15. 指数、对数值的大小比较:(1)化同底后利用函数的单调性;(2)作差或作商法;(3)利用中间量(0或1);(4)化同指数(或同真数)后利用图象比较。
14.指数式、对数式:
,,,,,,,,,,, 。如(1)的值为________(答:8);(2)的值为________(答:)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com