46.(08四川凉山)25.(9分)如图,在中,是的中点,以为直径的交的三边,交点分别是点.的交点为,且,.
(1)求证:.(2)求的直径的长.
(3)若,以为坐标原点,所在的直线分别为轴和轴,建立平面直角坐标系,求直线的函数表达式.
(08四川凉山25题解析)25.(9分)
(1)连接
是圆直径,,即
,.················································································· 1分
.在中,.··························· 2分
(2)是斜边的中点,,,
又由(1)知,.
又,与相似······················································ 3分
············································································ 4分
又,
,,······································ 5分
设,,,
直径.······························································································· 6分
(3)斜边上中线,
在中,,······························ 7分
设直线的函数表达式为,
根据题意得,
解得
直线的函数解析式为(其他方法参照评分)································· 9分
25.如图10,已知抛物线经过点(1,-5)和(-2,4)
(1)求这条抛物线的解析式.
(2)设此抛物线与直线相交于点A,B(点B在点A的右侧),平行于轴的直线与抛物线交于点M,与直线交于点N,交轴于点P,求线段MN的长(用含的代数式表示).
(3)在条件(2)的情况下,连接OM、BM,是否存在的值,使△BOM的面积S最大?若存在,请求出的值,若不存在,请说明理由.
43.(08四川广安)(本题答案暂缺)七、解答题(本大题满分12分)
28. 如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且=3,sin∠OAB=.
(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;
(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若将点O、点A分别变换为点Q( -2k ,0)、点R(5k,0)(k>1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为,△QNR的面积,求∶的值.
42.(08四川成都)(本题答案暂缺)四、(共12分)
39.(08山西省卷)(本题答案暂缺)26.(本题14分)如图,已知直线的解析式为,直线与x轴、y轴分别相交于A、B两点,直线经过B、C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线从点C向点B移动。点P、Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒()。
(1)求直线的解析式。
(2)设△PCQ的面积为S,请求出S关于t的函数关系式。
(3)试探究:当t为何值时,△PCQ为等腰三角形?
40(08山西太原)29.(本小题满分12分)
如图,在平面直角坐标系中,直线与交于点,分别交轴于点和点,点是直线上的一个动点.
(1)求点的坐标.
(2)当为等腰三角形时,求点的坐标.
(3)在直线上是否存在点,使得以点为顶点的四边形是平行四边形?如果存在,直线写出的值;如果不存在,请说明理由.
(08山西太原29题解析)29.解:(1)在中,当时,,
,点的坐标为.·········································································· 1分
在中,当时,,点的坐标为(4,0).·· 2分
由题意,得解得
点的坐标为.····················································································· 3分
(2)当为等腰三角形时,有以下三种情况,如图(1).设动点的坐标为.
由(1),得,.
①当时,过点作轴,垂足为点,则.
.
,点的坐标为.················································· 4分
②当时,过点作轴,垂足为点,则.
,,
.
解,得(舍去).此时,.
点的坐标为.·············································································· 6分
③当,或时,同理可得.····················· 9分
由此可得点的坐标分别为.
评分说明:符合条件的点有4个,正确求出1个点的坐标得1分,2个点的坐标得3分,3个点的坐标得5分,4个点的坐标得满分;与所求点的顺序无关.
(3)存在.以点为顶点的四边形是平行四边形有以下三种情形,如图(2).
①当四边形为平行四边形时,.··········································· 10分
②当四边形为平行四边形时,.············································ 11分
③当四边形为平行四边形时,.········································ 12分
41(08陕西省卷)25、(本题满分12分)
某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处。
如图,甲、乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学。点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处。
为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:
方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;
方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;
方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值。
综上,你认为把供水站建在何处,所需铺设的管道最短?
(08陕西省卷25题解析)25、解:方案一:由题意可得:MB⊥OB,
∴点M到甲村的最短距离为MB。…………………(1分)
∵点M到乙村的最短距离为MD,
∴将供水站建在点M处时,管道沿MD、MB线路铺设的长度之和最小,
即最小值为MB+MD=3+ (km)…………………(3分)
方案二:如图①,作点M关于射线OE的对称点M′,则MM′=2ME,
连接AM′交OE于点P,PE∥AM,PE=。
∵AM=2BM=6,∴PE=3 …………………(4分)
在Rt△DME中,∵DE=DM·sin60°=×=3,ME==×,
∴PE=DE,∴ P点与E点重合,即AM′过D点。…………(6分)
在线段CD上任取一点P′,连接P′A,P′M,P′M′,
则P′M=P′M′。∵A P′+P′M′>AM′,
∴把供水站建在乙村的D点处,管道沿DA、DM线路铺设的长度之和最小,
即最小值为AD+DM=AM′=………(7分)
方案三:作点M关于射线OF的对称点M′,作M′N⊥OE于N点,交OF于点G,
交AM于点H,连接GM,则GM=GM′
∴M′N为点M′到OE的最短距离,即M′N=GM+GN
在Rt△M′HM中,∠MM′N=30°,MM′=6,
∴MH=3,∴NE=MH=3
∵DE=3,∴N、D两点重合,即M′N过D点。
在Rt△M′DM中,DM=,∴M′D=…………(10分)
在线段AB上任取一点G′,过G′作G′N′⊥OE于N′点,
连接G′M′,G′M,
显然G′M+G′N′=G′M′+G′N′>M′D
∴把供水站建在甲村的G处,管道沿GM、GD
线路铺设的长度之和最小,即最小值为
GM+GD=M′D=。 …(11分)
综上,∵3+<,
∴供水站建在M处,所需铺设的管道长度最短。 …………(12分)
32.(08山东青岛)24.(本小题满分12分)
已知:如图①,在中,,,,点由出发沿方向向点匀速运动,速度为1cm/s;点由出发沿方向向点匀速运动,速度为2cm/s;连接.若设运动的时间为(),解答下列问题:(1)当为何值时,?
(2)设的面积为(),求与之间的函数关系式;
(3)是否存在某一时刻,使线段恰好把的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;
(4)如图②,连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
(08山东青岛24题解析)24.(本小题满分12分)
解:(1)在Rt△ABC中,,
由题意知:AP = 5-t,AQ = 2t,
若PQ∥BC,则△APQ ∽△ABC,
∴,
∴,
∴. ··································································································· 3′
(2)过点P作PH⊥AC于H.
∵△APH ∽△ABC,
∴,
∴,
∴,
∴. ··········································· 6′
(3)若PQ把△ABC周长平分,
则AP+AQ=BP+BC+CQ.
∴,
解得:.
若PQ把△ABC面积平分,
则, 即-+3t=3.
∵ t=1代入上面方程不成立,
∴不存在这一时刻t,使线段PQ把Rt△ACB的周长和面积同时平分.················ 9′
(4)过点P作PM⊥AC于M,PN⊥BC于N,
若四边形PQP ′ C是菱形,那么PQ=PC.
∵PM⊥AC于M,
∴QM=CM.
∵PN⊥BC于N,易知△PBN∽△ABC.
∴, ∴,
∴,
∴,
∴,
解得:.
∴当时,四边形PQP ′ C 是菱形.
此时, ,
在Rt△PMC中,,
∴菱形PQP ′ C边长为. 12′
33(08山东泰安)26.(本小题满分10分)
在等边中,点为上一点,连结,直线与分别相交于点,且.
(1)如图1,写出图中所有与相似的三角形,并选择其中一对给予证明;
(2)若直线向右平移到图2、图3的位置时(其它条件不变),(1)中的结论是否仍然成立?若成立,请写出来(不证明),若不成立,请说明理由;
(3)探究:如图1,当满足什么条件时(其它条件不变),?请写出探究结果,并说明理由.
(说明:结论中不得含有未标识的字母)
(08山东泰安26题解析)26.(本小题满分10分)
(1)与······························································ 2分
以为例,证明如下:
····································································································· 4分
(2)均成立,均为,········································· 6分
(3)平分时,.····································································· 7分
证明:平分
··············································································································· 8分
又
············································································································· 10分
注:所有其它解法均酌情赋分.
34(08山东威海)24.(11分) 如图,点A(m,m+1),B(m+3,m-1)都在反比例函数的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点,
以点A,B,M,N为顶点的四边形是平行四边形,
试求直线MN的函数表达式.
(3)选做题:在平面直角坐标系中,点P的坐标
为(5,0),点Q的坐标为(0,3),把线段PQ向右平
移4个单位,然后再向上平移2个单位,得到线段P1Q1,
则点P1的坐标为 ,点Q1的坐标为 .
(08山东威海24题解析)24.(本小题满分11分)
解:(1)由题意可知,.
解,得 m=3. ………………………………3分
∴ A(3,4),B(6,2);
∴ k=4×3=12. ……………………………4分
(2)存在两种情况,如图:
①当M点在x轴的正半轴上,N点在y轴的正半轴
上时,设M1点坐标为(x1,0),N1点坐标为(0,y1).
∵ 四边形AN1M1B为平行四边形,
∴ 线段N1M1可看作由线段AB向左平移3个单位,
再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).
由(1)知A点坐标为(3,4),B点坐标为(6,2),
∴ N1点坐标为(0,4-2),即N1(0,2); ………………………………5分
M1点坐标为(6-3,0),即M1(3,0). ………………………………6分
设直线M1N1的函数表达式为,把x=3,y=0代入,解得.
∴ 直线M1N1的函数表达式为. ……………………………………8分
②当M点在x轴的负半轴上,N点在y轴的负半轴上时,设M2点坐标为(x2,0),N2点坐标为(0,y2).
∵ AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2,
∴ N1M1∥M2N2,N1M1=M2N2.
∴ 线段M2N2与线段N1M1关于原点O成中心对称.
∴ M2点坐标为(-3,0),N2点坐标为(0,-2). ………………………9分
设直线M2N2的函数表达式为,把x=-3,y=0代入,解得,
∴ 直线M2N2的函数表达式为.
所以,直线MN的函数表达式为或. ………………11分
(3)选做题:(9,2),(4,5). ………………………………………………2分
35(08山东威海)25.(12分) 如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.
(1)求梯形ABCD的面积;
(2)求四边形MEFN面积的最大值.
(3)试判断四边形MEFN能否为正方形,若能,
求出正方形MEFN的面积;若不能,请说明理由.
(08山东威海25题解析)25.(本小题满分12分)
解:(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H. ……………1分
∵ AB∥CD,
∴ DG=CH,DG∥CH.
∴ 四边形DGHC为矩形,GH=CD=1.
∵ DG=CH,AD=BC,∠AGD=∠BHC=90°,
∴ △AGD≌△BHC(HL).
∴ AG=BH==3. ………2分
∵ 在Rt△AGD中,AG=3,AD=5,
∴ DG=4.
∴ . ………………………………………………3分
(2)∵ MN∥AB,ME⊥AB,NF⊥AB,
∴ ME=NF,ME∥NF.
∴ 四边形MEFN为矩形.
∵ AB∥CD,AD=BC,
∴ ∠A=∠B.
∵ ME=NF,∠MEA=∠NFB=90°,
∴ △MEA≌△NFB(AAS).
∴ AE=BF. ……………………4分
设AE=x,则EF=7-2x. ……………5分
∵ ∠A=∠A,∠MEA=∠DGA=90°,
∴ △MEA∽△DGA.
∴ .
∴ ME=. …………………………………………………………6分
∴ . ……………………8分
当x=时,ME=<4,∴四边形MEFN面积的最大值为.……………9分
(3)能. ……………………………………………………………………10分
由(2)可知,设AE=x,则EF=7-2x,ME=.
若四边形MEFN为正方形,则ME=EF.
即 7-2x.解,得 . ……………………………………………11分
∴ EF=<4.
∴ 四边形MEFN能为正方形,其面积为. ………12分
36(08山东潍坊)(本题答案暂缺)24.(本题满分12分)
如图,圆切轴于原点,过定点作圆切线交圆于点.已知,抛物线经过两点.
(1)求圆的半径;
(2)若抛物线经过点,求其解析式;
(3)投抛物线交轴于点,若三角形为直角三角形,求点的坐标.
37(08山东烟台)25、(本题满分14分)
如图,抛物线交轴于A、B两点,交轴于M点.抛物线向右平移2个单位后得到抛物线,交轴于C、D两点.
(1)求抛物线对应的函数表达式;
(2)抛物线或在轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;
(3)若点P是抛物线上的一个动点(P不与点A、B重合),那么点P关于原点的对称点Q是否在抛物线上,请说明理由.
38(08山东枣庄)25.(本题满分10分)
把一副三角板如图甲放置,其中,,,斜边,.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点,与D1E1相交于点F.
(1)求的度数;
(2)求线段AD1的长;
(3)若把三角形D1CE1绕着点顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.
(08山东枣庄25题解析)25.(本题满分10分)
解:(1)如图所示,,,
∴. ………………………………1分
又,
∴. ………3分
(2),∴∠D1FO=60°.
,∴. ··································································· 4分
又,,∴.
,∴.····················································· 5分
又,∴.
在中,.································· 6分
(3)点在内部. ··········································································· 7分
理由如下:设(或延长线)交于点P,则.
在中,, …………·································· 9分
,即,∴点在内部. ……………10分
30.(08山东临沂)25.(本小题满分11分)
已知∠MAN,AC平分∠MAN。
⑴在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;
⑵在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
⑶在图3中:
①若∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=____AC;
②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=____AC(用含α的三角函数表示),并给出证明。
(08山东临沂25题解析)25.解:⑴证明:∵AC平分∠MAN,∠MAN=120°,
∴∠CAB=∠CAD=60°,
∵∠ABC=∠ADC=90°,
∴∠ACB=∠ACD=30°,…………1分
∴AB=AD=AC,……………………2分
∴AB+AD=AC。……………………3分
⑵成立。……………………………r…4分
证法一:如图,过点C分别作AM、AN的垂线,垂足分别为E、F。
∵AC平分∠MAN,∴CE=CF.
∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,
∴∠CDE=∠ABC,………………………………………………………………5分
∵∠CED=∠CFB=90°,∴△CED≌△CFB,∴ED=FB,……………………6分
∴AB+AD=AF+BF+AE-ED=AF+AE,由⑴知AF+AE=AC,
∴AB+AD=AC……………………………………………………………………7分
证法二:如图,在AN上截取AG=AC,连接CG.
∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG,…………5分
∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,
∴∠CBG=∠ADC,∴△CBG≌△CDA,……………………………………6分
∴BG=AD,
∴AB+AD=AB+BG=AG=AC,…………………………………………7分
⑶①;………………………………………………………………………8分
②.………………………………………………………………………9分
证明:由⑵知,ED=BF,AE=AF,
在Rt△AFC中,,即,
∴,………………………………………………………………10分
∴AB+AD=AF+BF+AE-ED=AF+AE=2,…………11分
31(08山东临沂)26.(本小题满分13分)
如图,已知抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3)。
⑴求抛物线的解析式;
⑵设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
⑶若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标。
(08山东临沂26题解析)26.⑴∵抛物线与y轴交于点C(0,3),
∴设抛物线解析式为………1分
根据题意,得,解得
∴抛物线的解析式为………………………………………2分
⑵存在。…………………………………………………………………………3分
由得,D点坐标为(1,4),对称轴为x=1。…………4分
①若以CD为底边,则PD=PC,设P点坐标为(x,y),根据勾股定理,
得,即y=4-x。…………………………5分
又P点(x,y)在抛物线上,∴,即…………6分
解得,,应舍去。∴。……………………7分∴,即点P坐标为。……………………8分
②若以CD为一腰,因为点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称,此时点P坐标为(2,3)。
∴符合条件的点P坐标为或(2,3)。……………………9分
⑶由B(3,0),C(0,3),D(1,4),根据勾股定理,
得CB=,CD=,BD=,………………………………………………10分
∴,
∴∠BCD=90°,………………………………………………………………………11分
设对称轴交x轴于点E,过C作CM⊥DE,交抛物线于点M,垂足为F,在Rt△DCF中,
∵CF=DF=1,
∴∠CDF=45°,
由抛物线对称性可知,∠CDM=2×45°=90°,点坐标M为(2,3),
∴DM∥BC,
∴四边形BCDM为直角梯形, ………………12分
由∠BCD=90°及题意可知,
以BC为一底时,顶点M在抛物线上的直角梯形只有上述一种情况;
以CD为一底或以BD为一底,且顶点M在抛物线上的直角梯形均不存在。
综上所述,符合条件的点M的坐标为(2,3)。……………13分
29.(08山东德州东营菏泽)24.(本题满分12分)
在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切?
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
(08山东德州东营菏泽23题解析)23.(本题满分12分)
解:(1)∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C.
∴ △AMN ∽ △ABC.
∴ ,即.
∴ AN=x. ……………2分
∴ =.(0<<4) ………………3分
(2)如图2,设直线BC与⊙O相切于点D,连结AO,OD,则AO =OD =MN.
在Rt△ABC中,BC ==5.
由(1)知 △AMN ∽ △ABC.
∴ ,即.
∴ ,
∴ . …………………5分
过M点作MQ⊥BC 于Q,则.
在Rt△BMQ与Rt△BCA中,∠B是公共角,
∴ △BMQ∽△BCA.
∴ .
∴ ,.
∴ x=.
∴ 当x=时,⊙O与直线BC相切.…………………………………………7分
(3)随点M的运动,当P点落在直线BC上时,连结AP,则O点为AP的中点.
∵ MN∥BC,∴ ∠AMN=∠B,∠AOM=∠APC.
∴ △AMO ∽ △ABP.
∴ . AM=MB=2.
故以下分两种情况讨论:
① 当0<≤2时,.
∴ 当=2时, …………………………………………8分
② 当2<<4时,设PM,PN分别交BC于E,F.
∵ 四边形AMPN是矩形,
∴ PN∥AM,PN=AM=x.
又∵ MN∥BC,
∴ 四边形MBFN是平行四边形.
∴ FN=BM=4-x.
∴ .
又△PEF ∽ △ACB.
∴ .
∴ . ……………………………………………………… 9分
=.……………………10分
当2<<4时,.
∴ 当时,满足2<<4,. ……………………………11分
综上所述,当时,值最大,最大值是2. ……………………………12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com