1.画出不等式-+2y-4<0表示的平面区域.
[例1] .画出不等式组表示的平面区域.
错解:如图(1)所示阴影部分即为不等式组表示的平面区域.
错因一是实虚线不清,二是部分不等式所表示的平面区域弄错了.
正解:如图(2)所示阴影部分即为不等式组表示的平面区域.
[例2] 已知1x-y2,且2x+y4,求4x-2y的范围.
错解:由于 1x-y2 ①,
2x+y4 ②,
①+② 得32x6 ③
①×(-1)+② 得:02y3 ④.
③×2+④×(-1)得. 34x-2y12
错因:可行域范围扩大了.
正解:线性约束条件是:
令z=4x-2y,
画出可行域如右图所示,
由得A点坐标(1.5,0.5)此时z=4×1.5-2×0.5=5.
由得B点坐标(3,1)此时z=4×3-2×1=10.
54x-2y10
[例3] 已知,求x2+y2的最值.
错解:不等式组表示的平面区域如右图所示ABC的内部(包括边界),
令z= x2+y2
由得A点坐标(4,1),
此时z=x2+y2=42+12=17,
由得B点坐标(-1,-6),
此时z=x2+y2=(-1)2+(-6)2=37,
由得C点坐标(-3,2),
此时z=x2+y2=(-3)2+22=13,
当时x2+y2取得最大值37,当时x2+y2取得最小值13.
错因:误将求可行域内的点到原点的距离的平方的最值误认为是求三点A、B、C到原点的距离的平方的最值.
正解:不等式组表示的平面区域如图所示ABC的内部(包括边界),
令z= x2+y2,则z即为点(x,y)到原点的距离的平方.
由得A点坐标(4,1),
此时z=x2+y2=42+12=17,
由得B点坐标(-1,-6),
此时z=x2+y2=(-1)2+(-6)2=37,
由得C点坐标(-3,2),
此时z=x2+y2=(-3)2+22=13,
而在原点处,,此时z=x2+y2=02+02=0,
当时x2+y2取得最大值37,当时x2+y2取得最小值0.
[例4]某家具厂有方木料90m3,五合板600m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1m3,五合板2m2,生产每个书橱需要方木料0.2m3,五合板1m2,出售一张书桌可获利润80元,出售一个书橱可获利润120元.如果只安排生产书桌,可获利润多少?如果只安排生产书橱,可获利润多少?怎样安排生产可使得利润最大?
分析: 数据分析列表
|
书桌 |
书橱 |
资源限制 |
木料(m3) |
0.1 |
0.2 |
90 |
五合板(m2) |
2 |
1 |
600 |
利润(元/张) |
80 |
120 |
|
计划生产(张) |
x |
y |
|
设生产书桌x张,书橱y张,利润z元,则约束条件为
2x+y-600=0 A(100,400) x+2y-900=0 2x+3y=0 |
目标函数z=80x+120y
作出上可行域:
作出一组平行直线2x+3y=t, 此直线经过点A(100,400)时,即合理安排生产,生产书桌100张,书橱400张,有最大利润为
zmax=80×100+400×120=56000(元)
若只生产书桌,得0<x≤300,即最多生产300张书桌,利润为
z=80×300=24000(元)
若只生产书橱,得0<y≤450,即最多生产450张书橱,利润为z=120×450=54000(元)
答:略
[例5]某钢材厂要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格小钢板的块数如下表:
|
A规格 |
B规格 |
C规格 |
第一种钢板 |
1 |
2 |
1 |
第二种钢板 |
1 |
1 |
3 |
需求 |
12 |
15 |
27 |
每张钢板的面积,第一种为1m2,第二种为2 m2,今需要A、B、C三种规格的成品各12、15、27块,请你们为该厂计划一下,应该分别截这两种钢板多少张,可以得到所需的三种规格成品,而且使所用钢板的面积最小?只用第一种钢板行吗?
解:设需要截第一种钢板x张,第二种钢板y张,所用钢板面积为z m2,则
目标函数z=x+2y
作出可行域如图
作一组平行直线x+2y=t,
2x+y=15 x+y=12 x+3y=27 x+2y=0 |
由
可得交点,
但点不是可行域内的整点,其附近的整点(4,8)或(6,7)可都使z有最小值,
且zmin=4+2×8=20 或zmin=6+2×7=20
若只截第一种钢板,由上可知x≥27,所用钢板面积最少为z=27(m2);
若只截第二种钢板,则y≥15,最少需要钢板面积z=2×15=30(m2).
它们都比zmin大,因此都不行.
答:略
[例6]设,式中满足条件,求的最大值和最小值.
解:由引例可知:直线与所在直线平行,则由引例的解题过程知,
当与所在直线重合时最大,此时满足条件的最优解有无数多个,
当经过点时,对应最小,∴,.
说明:1.线性目标函数的最大值、最小值一般在可行域的顶点处取得;
2.线性目标函数的最值也可在可行域的边界上取得,即满足条件的最优解有无数多个.
5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.
4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.
3. 平 移 直 线 y=-kx +P时,直线必须经过可行域.
2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若 直 线 不 过 原点,通 常 选 择 原 点 代入检验.
线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.
1.对于不含边界的区域,要将边界画成虚线.
5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.
4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.
3. 整点:坐标为整数的点叫做整点.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com