(四)巩固练习:
1.函数的值域为 .
2.若函数在上的最大值与最小值之差为2,则 .
(二)(配方法),
∴的值域为.
改题:求函数,的值域.
解:(利用函数的单调性)函数在上单调增,
∴当时,原函数有最小值为;当时,原函数有最大值为.
∴函数,的值域为.
(2)求复合函数的值域:设(),则原函数可化为.
又∵,∴,故,
∴的值域为.
(3)(法一)反函数法:的反函数为,其定义域为,
∴原函数的值域为.
(法二)分离变量法:,
∵,∴,
∴函数的值域为.
(4)换元法(代数换元法):设,则,
∴原函数可化为,∴,
∴原函数值域为.
说明:总结型值域,变形:或
(5)三角换元法:∵,∴设,
则
∵,∴,∴,∴,
∴原函数的值域为.
(6)数形结合法:,∴,∴函数值域为.
(7)判别式法:∵恒成立,∴函数的定义域为.
由得: ①
①当即时,①即,∴
②当即时,∵时方程恒有实根,
∴,∴且,
∴原函数的值域为.
(8),
∵,∴,∴,当且仅当时,即时等号成立.∴,∴原函数的值域为.
(9)(法一)方程法:原函数可化为:,
∴(其中),
∴,∴,∴,∴,
∴原函数的值域为.
(法二)数形结合法:可看作求点与圆上的点的连线的斜率的范围,解略.
例2.若关于的方程有实数根,求实数的取值范围.
解:原方程可化为,
令,则,,又∵在区间上是减函数,
∴,即,
故实数的取值范围为:.
例3.某化妆品生产企业为了占有更多的市场份额,拟在2003年度进行一系列的促销活动.经过市场调查和测算,化妆品的年销量万件与年促销费用万元之间满足:与成反比例;如果不搞促销活动,化妆品的年销量只能是1万件.
已知2003年,生产化妆品的固定投入为3万元,每生产1万件化妆品需再投入32万元.当将每件化妆品的售价定为“年平均每件成本的150%”与“年平均每件所占促销费的一半”之和,则当年产销量相等.
(1)将2003年的年利润万元表示为年促销费万元的函数;
(2)该企业2003年的促销费投入多少万元时,企业的年利润最大?
(注:利润=收入-生产成本-促销费)
解:(1)由题设知:,且时,,∴,即,
∴年生产成本为万元,年收入为.
∴年利润,
∴.
(2)由(1)得,
当且仅当,即时,有最大值.
∴当促销费定为万元时,年该化妆品企业获得最大利润.
(三)例题分析:
例1.求下列函数的值域:
(1); (2); (3);
(4); (5); (6);
(7); (8); (9).
解:(1)(一)公式法(略)
(二)主要方法(范例分析以后由学生归纳):
求函数的值域的方法常用的有:直接法,配方法,判别式法,基本不等式法,逆求法(反函数法),换元法,图像法,利用函数的单调性、奇偶性求函数的值域等.
(一)主要知识:
1.函数的值域的定义;2.确定函数的值域的原则;3.求函数的值域的方法.
(四)巩固练习:
1.已知的定义域为,则的定义域为.
2.函数的定义域为.
(三)例题分析:
例1.已知函数的定义域为,函数的定义域为,则
( )
解法要点:,,
令且,故.
例2.(1)已知,求;
(2)已知,求;
(3)已知是一次函数,且满足,求;
(4)已知满足,求.
解:(1)∵,
∴(或).
(2)令(),则,∴,∴.
(3)设,
则,
∴,,∴.
(4) ①, 把①中的换成,得 ②,
①②得,∴.
注:第(1)题用配凑法;第(2)题用换元法;第(3)题已知一次函数,可用待定系数法;第(4)题用方程组法.
例3.设函数,
(1)求函数的定义域;
解:(1)由,解得 ①
当时,①不等式解集为;当时,①不等式解集为,
∴的定义域为.
(二)主要方法:
1.求函数解析式的题型有:
(1)已知函数类型,求函数的解析式:待定系数法;
(2)已知求或已知求:换元法、配凑法;
(3)已知函数图像,求函数解析式;
(4)满足某个等式,这个等式除外还有其他未知量,需构造另个等式:解方程组法;
(5)应用题求函数解析式常用方法有待定系数法等.
2.求函数定义域一般有三类问题:
(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;
(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;
(3)已知的定义域求的定义域或已知的定义域求的定义域:
①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域;
②若已知的定义域,其复合函数的定义域应由解出.
(一)主要知识:1.函数解析式的求解;2.函数定义域的求解.
(四)巩固练习:
1.给定映射,点的原象是
2.下列函数中,与函数相同的函数是 ( )
3.设函数,则=.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com