2.系统归纳求函数定义域、值域、解析式、反函数的基本方法.在熟练有关技能的同时,注意对换元、待定系数法等数学思想方法的运用.
函数有二种定义,一是变量观点下的定义,一是映射观点下的定义.复习中不能仅满足对这两种定义的背诵,而应在判断是否构成函数关系,两个函数关系是否相同等问题中得到深化,更应在有关反函数问题中正确运用.具体要求是:
1.深化对函数概念的理解,明确函数三要素的作用,并能以此为指导正确理解函数与其反函数的关系.
例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ).
(A) (B) (C)5 (D)6
分析及解:设长方体三条棱长分别为x,y,z,则依条件得:
2(xy+yz+zx)=11,4(x+y+z)=24.而欲求的对角线长为,因此需将对称式写成基本对称式x+y+z及xy+yz+zx的组合形式,完成这种组合的常用手段是配方法.故=62-11=25
∴ ,应选C.
例2.设F1和F2为双曲线的两个焦点,点P在双曲线上且满足∠F1PF2=90°,则ΔF1PF2的面积是( ).
(A)1 (B) (C)2 (D)
分析及解:欲求 (1),而由已知能得到什么呢?
由∠F1PF2=90°,得 (2),
又根据双曲线的定义得|PF1|-|PF2|=4 (3),那么(2)、(3)两式与要求的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即,
故∴ ,∴ 选(A).
注:配方法实现了“平方和”与“和的平方”的相互转化.
例3.设双曲线的中心是坐标原点,准线平行于x轴,离心率为,已知点P(0,5)到该双曲线上的点的最近距离是2,求双曲线方程.
分析及解:由题意可设双曲线方程为,∵,∴a=2b,因此所求双曲线方程可写成: (1),故只需求出a可求解.
设双曲线上点Q的坐标为(x,y),则|PQ|= (2),∵点Q(x,y)在双曲线上,∴(x,y)满足(1)式,代入(2)得|PQ|= (3),此时|PQ|2表示为变量y的二次函数,利用配方法求出其最小值即可求解.
由(3)式有(y≥a或y≤-a).
二次曲线的对称轴为y=4,而函数的定义域y≥a或y≤-a,因此,需对a≤4与a>4分类讨论.
(1)当a≤4时,如图(1)可知函数在y=4处取得最小值,
∴令,得a2=4
∴所求双曲线方程为.
(2)当a>4时,如图(2)可知函数在y=a处取得最小值,
∴令,得a2=49,
∴所求双曲线方程为.
注:此题是利用待定系数法求解双曲线方程的,其中利用配方法求解二次函数的最值问题,由于二次函数的定义域与参数a有关,因此需对字母a的取值分类讨论,从而得到两个解,同学们在解答数习题时应学会综合运用数学思想方法解题.
例4.设f(x)是一次函数,且其在定义域内是增函数,又,试求f(x)的表达式.
分析及解:因为此函数的模式已知,故此题需用待定系数法求出函数表达式.
设一次函数y=f(x)=ax+b (a>0),可知 ,
∴.
比较系数可知:
解此方程组,得 ,b=2,∴所求f(x)=.
例5.如图,已知在矩形ABCD中,C(4,4),点A在曲线(x>0,y>0)上移动,且AB,BC两边始终分别平行于x轴,y轴,求使矩形ABCD的面积为最小时点A的坐标.
分析及解:设A(x,y),如图所示,则(4-x)(4-y) (1)
此时S表示为变量x,y的函数,如何将S表示为一个变量x(或y)的函数呢?有的同学想到由已知得x2+y2=9,如何利用此条件?是从等式中解出x(或y),再代入(1)式,因为表达式有开方,显然此方法不好.
如果我们将(1)式继续变形,会得到S=16-4(x+y)+xy (2)
这时我们可联想到x2+y2与x+y、xy间的关系,即(x+y)2=9+2xy.
因此,只需设t=x+y,则xy=,代入(2)式得 S=16-4t+(3)S表示为变量t的二次函数,
∵0<x<3,0<y<3,∴3<t<,∴当t=4时,SABCD的最小值为.
此时
注:换元前后新旧变量的取值范围是不同的,这样才能防止出现不必要的错误.
例6.设方程x2+2kx+4=0的两实根为x1,x2,若≥3,求k的取值范围.
解:∵≥3,
以,代入整理得(k2-2)2≥5,又∵Δ=4k2-16≥0,
∴解得k∈(-)∪[,+].
例7.点P(x,y)在椭圆上移动时,求函数u=x2+2xy+4y2+x+2y的最大值.
解:∵点P(x,y)在椭圆上移动, ∴可设 于是
=
=
令, ∵,∴|t|≤.
于是u=,(|t|≤).
当t=,即时,u有最大值.
∴θ=2kπ+(k∈Z)时,.
例8.过坐标原点的直线l与椭圆相交于A,B两点,若以AB为直径的圆恰好通过椭圆的左焦点F,求直线l的倾斜角.
解:设A(x1,y1),B(x2,y2)
直线l的方程为y=kx,将它代入椭圆方
程整理得 (*)
由韦达定理,(1),(2)
又F(1,0)且AF⊥BF,∴, 即 ,
将,代入上式整理得 ,
将(1)式,(2)式代入,解得 . 故直线l的倾斜角为或.
注:本题设交点坐标为参数,“设而不求”,以这些参数为桥梁建立斜率为k的方程求解.
例9.设集合A={}
(1)若A中有且只有一个元素,求实数a的取值集合B;
(2)当a∈B时,不等式x2-5x-6<a(x-4)恒成立,求x的取值范围.
解:(1)令t=2x,则t>0且方程化为t2-2t+a=0 (*),A中有且只有一个元素等价于方程(*)有且只有一个正根,再令f(t)=t2-2t+a,
则Δ=0 或即a=1或a≤0,从而B=(-,0]∪{1}.
(2)当a=1时,<x<3+,
当a≤0,令g(a)=a(x-4)-(x2-5x-6),则当a≤0时不等式 恒成立,
即当a≤0时,g(a)>0恒成立,故 ≤4.
综上讨论,x的取值范围是(,4).
配方法、待定系数法、换元法是几种常用的数学基本方法.这些方法是数学思想的具体体现,是解决问题的手段,它不仅有明确的内涵,而且具有可操作性,有实施的步骤和作法.
配方法是对数学式子进行一种定向的变形技巧,由于这种配成“完全平方”的恒等变形,使问题的结构发生了转化,从中可找到已知与未知之间的联系,促成问题的解决.
待定系数法的实质是方程的思想,这个方法是将待定的未知数与已知数统一在方程关系中,从而通过解方程(或方程组)求得未知数.
换元法是一种变量代换,它是用一种变数形式去取代另一种变数形式,从而使问题得到简化,换元的实质是转化.
2.为了实施有效的化归,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,又可以变换问题的外部形式,既可以从代数的角度去认识问题,又可以从几何的角度去解决问题。
1.熟练、扎实地掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。“抓基础,重转化”是学好中学数学的金钥匙。
例1.某厂2001年生产利润逐月增加,且每月增加的利润相同,但由于厂方正在改造建设,元月份投入资金建设恰好与元月的利润相等,随着投入资金的逐月增加,且每月增加投入的百分率相同,到12月投入建设资金又恰好与12月的生产利润相同,问全年总利润m与全年总投入N的大小关系是 ( )
A. m>N B. m<N C.m=N D.无法确定
[分析]每月的利润组成一个等差数列{an},且公差d>0,每月的投资额组成一个等比数列{bn},且公比q>1。,且,比较与的大小。
若直接求和,很难比较出其大小,但注意到等差数列的通项公式an=a1+(n-1)d是关于n的一次函数,其图象是一条直线上的一些点列。等比数列的通项公式bn=a1qn-1是关于n的指数函数,其图象是指数函数上的一些点列。
在同一坐标系中画出图象,直观地可以看出ai≥bi 则>,即m>N。
[点评]把一个原本是求和的问题,退化到各项的逐一比较大小,而一次函数、指数函数的图象又是每个学生所熟悉的。在对问题的化归过程中进一步挖掘了问题的内涵,通过对问题的反思、再加工后,使问题直观、形象,使解答更清新。
例2.如果,三棱锥P-ABC中,已知PA⊥BC,PA=BC=l,PA,BC的公垂线ED=h.求证三棱锥P-ABC的体积.
分析:如视P为顶点,△ABC为底面,则无论是S△ABC以及高h都不好求.如果观察图形,换个角度看问题,创造条件去应用三棱锥体积公式,则可走出困境.
解:如图,连结EB,EC,由PA⊥BC,PA⊥ED,ED∩BC=E,可得PA⊥面ECD.这样,截面ECD将原三棱锥切割成两个分别以ECD为底面,以PE、AE为高的小三棱锥,而它们的底面积相等,高相加等于PE+AE=PA=l,所以
VP-ABC=VP-ECD+VA-ECD=S△ECD•AE+S△ECD•PE=S△ECD •PA=•BC·ED·PA=. 评注:辅助截面ECD的添设使问题转化为已知问题迎刃而解.
例3.在的展开式中x的系数为( ).
(A)160 (B)240 (C)360 (D)800
分析与解:本题要求展开式中x的系数,而我们只学习过多项式乘法法则及二项展开式定理,因此,就要把对x系数的计算用上述两种思路进行转化:
思路1:直接运用多项式乘法法则和两个基本原理求解,则展开式是一个关于x的10次多项式, =(x2+3x+2) (x2+3x+2) (x2+3x+2) (x2+3x+2) (x2+3x+2),它的展开式中的一次项只能从5个括号中的一个中选取一次项3x并在其余四个括号中均选 择常数项2相乘得到,故为·(3x)··24=5×3×16x=240x,所以应选(B).
思路2 利用二项式定理把三项式乘幂转化为二项式定理再进行计算,∵x2+3x+2=x2+ (3x+2)=(x2+2)+3x=(x2+3x)+2=(x+1)(x+2)=(1+x)(2+x),∴这条思路下又有四种不同的化归与转化方法.①如利用x2+3x+2=x2+(3x+2)转化,可以发现只有(3x+2)5中会有x项,即(3x)·24=240x,故选(B);②如利用x2+3x+2= (x2+2)+3x进行转化,则只 (x2+2) 4·3x中含有x一次项,即·3x·C44·24=240x;③如利用x2+3x+2=(x2+3x)+2进行转化,就只有·(x2+3x)·24中会有x项,即240x;④如选择x2+3x+2=(1+x)(2+x)进行转化,=×展开式中的一次项x只能由(1+x)5中的一次项乘以(2+x)5展开式中的常数项加上(2+x)5展开式中的一次项乘以(1+x)5展开式中的常数项后得到,即为x·25+•24•x••15=160x+80x=240x,故选(B).
评注:化归与转化的意识帮我们把未知转化为已知。
例4.若不等式对一切均成立,试求实数的取值范围。
解:
令,则要使它对均有,只要有
或。
点评:在有几个变量的问题中,常常有一个变元处于主要地位,我们称之为主元,由于思维定势的影响,在解决这类问题时,我们总是紧紧抓住主元不放,这在很多情况下是正确的。但在某些特定条件下,此路往往不通,这时若能变更主元,转移变元在问题中的地位,就能使问题迎刃而解。本题中,若视x为主元来处理,既繁且易出错,实行主元的转化,使问题变成关于p的一次不等式,使问题实现了从高维向低维转化,解题简单易行。
4.化归与转化应遵循的基本原则:
(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。
(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。
(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。
(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。
(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。
3.转化有等价转化和非等价转化。等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。
2.化归与转化思想的实质是揭示联系,实现转化。除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。从这个意义上讲,解决数学问题就是从未知向已知转化的过程。化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com