0  429219  429227  429233  429237  429243  429245  429249  429255  429257  429263  429269  429273  429275  429279  429285  429287  429293  429297  429299  429303  429305  429309  429311  429313  429314  429315  429317  429318  429319  429321  429323  429327  429329  429333  429335  429339  429345  429347  429353  429357  429359  429363  429369  429375  429377  429383  429387  429389  429395  429399  429405  429413  447090 

25.(09年四川卷)(20分)如图所示,轻弹簧一端连于固定点O,可在竖直平面内自由转动,另一端连接一带电小球P,其质量m=2×10-2 kg,电荷量q=0.2 C.将弹簧拉至水平后,以初速度V0=20 m/s竖直向下射出小球P,小球P到达O点的正下方O1点时速度恰好水平,其大小V=15 m/s.若O、O1相距R=1.5 m,小球P在O1点与另一由细绳悬挂的、不带电的、质量M=1.6×10-1 kg的静止绝缘小球N相碰。碰后瞬间,小球P脱离弹簧,小球N脱离细绳,同时在空间加上竖直向上的匀强电场E和垂直于纸面的磁感应强度B=1T的弱强磁场。此后,小球P在竖直平面内做半径r=0.5 m的圆周运动。小球P、N均可视为质点,小球P的电荷量保持不变,不计空气阻力,取g=10 m/s2。那么,

(1)弹簧从水平摆至竖直位置的过程中,其弹力做功为多少?

(2)请通过计算并比较相关物理量,判断小球P、N碰撞后能否在某一时刻具有相同的速度。

 (3)若题中各量为变量,在保证小球P、N碰撞后某一时刻具有相同速度的前提下,请推导出r的表达式(要求用B、q、m、θ表示,其中θ为小球N的运动速度与水平方向的夹角)。

解析:

(1)设弹簧的弹力做功为W,有:          

        ①

代入数据,得:W=J          ②

(2)由题给条件知,N碰后作平抛运动,P所受电场力和重力平衡,P带正电荷。设P、N碰后的速度大小分别为v1和V,并令水平向右为正方向,有:   ③

而:                ④

若P、N碰后速度同向时,计算可得V<v1,这种碰撞不能实现。P、N碰后瞬时必为反向运动。有:           ⑤

P、N速度相同时,N经过的时间为,P经过的时间为。设此时N的速度V1的方向与水平方向的夹角为,有:

                   ⑥

              ⑦

代入数据,得:             ⑧

对小球P,其圆周运动的周期为T,有:

                  ⑨

经计算得: <T,

P经过时,对应的圆心角为,有:      ⑩

当B的方向垂直纸面朝外时,P、的速度相同,如图可知,有:

联立相关方程得:

比较得, ,在此情况下,P、N的速度在同一时刻不可能相同。

当B的方向垂直纸面朝里时,P、N的速度相同,同样由图,有:

同上得:

比较得, ,在此情况下,P、N的速度在同一时刻也不可能相同。

(3)当B的方向垂直纸面朝外时,设在t时刻P、N的速度相同,

再联立④⑦⑨⑩解得:

当B的方向垂直纸面朝里时,设在t时刻P、N的速度相同

同理得:

考虑圆周运动的周期性,有:

(给定的B、q、r、m、等物理量决定n的取值)

(09年海南物理)16.(10分)如图,ABCD是边长为的正方形。质量为、电荷量为的电子以大小为的初速度沿纸面垂直于BC变射入正方形区域。在正方形内适当区域中有匀强磁场。电子从BC边上的任意点入射,都只能从A点射出磁场。不计重力,求:

(1)次匀强磁场区域中磁感应强度的方向和大小;

(2)此匀强磁场区域的最小面积。

解析:(1)设匀强磁场的磁感应强度的大小为B。令圆弧是自C点垂直于BC入射的电子在磁场中的运行轨道。电子所受到的磁场的作用力

应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外。圆弧的圆心在CB边或其延长线上。依题意,圆心在A、C连线的中垂线上,故B 点即为圆心,圆半径为按照牛顿定律有

  联立①②式得

(2)由(1)中决定的磁感应强度的方向和大小,可知自点垂直于入射电子在A点沿DA方向射出,且自BC边上其它点垂直于入射的电子的运动轨道只能在BAEC区域中。因而,圆弧是所求的最小磁场区域的一个边界。

为了决定该磁场区域的另一边界,我们来考察射中A点的电子的速度方向与BA的延长线交角为(不妨设)的情形。该电子的运动轨迹如图所示。

图中,圆的圆心为O,pq垂直于BC边 ,由③式知,圆弧的半径仍为,在D为原点、DC为x轴,AD为轴的坐标系中,P点的坐标

这意味着,在范围内,p点形成以D为圆心、为半径的四分之一圆周,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界。

因此,所求的最小匀强磁场区域时分别以为圆心、为半径的两个四分之一圆周所围成的,其面积为

评分参考:本题10分。第(1)问4分,①至③式各1分;得出正确的磁场方向的,再给1分。第(2)问6分,得出“圆弧是所求磁场区域的一个边界”的,给2分;得出所求磁场区域的另一个边界的,再给2分;⑥式2分。

试题详情

15.(09年江苏物理)(16分)如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直。长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m,置于导轨上。导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未图出)。线框的边长为d(d < l),电阻为R,下边与磁场区域上边界重合。将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。重力加速度为g。求:

(1)装置从释放到开始返回的过程中,线框中产生的焦耳热Q;

(2)线框第一次穿越磁场区域所需的时间t1

(3)经过足够长时间后,线框上边与磁场区域下边界的最大距离m

          

解析:

(1)设装置由静止释放到导体棒运动到磁场下边界的过程中,作用在线框上的安培力做功为W

由动能定理 

解得 

(2)设线框刚离开磁场下边界时的速度为,则接着向下运动

由动能定理 

装置在磁场中运动时收到的合力

感应电动势  =Bd

感应电流   =

安培力   

由牛顿第二定律,在t到t+时间内,有

解得 

(3)经过足够长时间后,线框在磁场下边界与最大距离之间往复运动

   由动能定理 

   解得  

试题详情

14.(09年江苏卷)(16分)1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直。A处粒子源产生的粒子,质量为m、电荷量为+q ,在加速器中被加速,加速电压为U。加速过程中不考虑相对论效应和重力作用。

              

(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;

(2)求粒子从静止开始加速到出口处所需的时间t;

(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能E

解析:

(1)设粒子第1次经过狭缝后的半径为r1,速度为v1

qu=mv12

qv1B=m

解得 

同理,粒子第2次经过狭缝后的半径 

(2)设粒子到出口处被加速了n圈

解得  

(3)加速电场的频率应等于粒子在磁场中做圆周运动的频率,即

当磁场感应强度为Bm时,加速电场的频率应为

粒子的动能

时,粒子的最大动能由Bm决定

解得

时,粒子的最大动能由fm决定

解得

试题详情

25.(09年浙江卷)(22分)如图所示,x轴正方向水平向右,y轴正方向竖直向上。在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。发射时,这束带电微粒分布在0<y<2R的区间内。已知重力加速度大小为g。

(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求点场强度和磁感应强度的大小和方向。

(2)请指出这束带电微粒与x轴相交的区域,并说明理由。

(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由。

答案:(1);方向垂直于纸面向外;(2)见解析;(3)与x同相交的区域范围是x>0。

解析:本题考查带电粒子在复合场中的运动。

带电粒子平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力平衡。设电场强度大小为E,由

           

可得         

方向沿y轴正方向。

带电微粒进入磁场后,将做圆周运动。 且

            r=R

如图(a)所示,设磁感应强度大小为B。由

           

得           

方向垂直于纸面向外

(2)这束带电微粒都通过坐标原点。

方法一:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动,其圆心位于其正下方的Q点,如图b所示,这束带电微粒进入磁场后的圆心轨迹是如图b的虚线半圆,此圆的圆心是坐标原点为。

方法二:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动。如图b示,高P点与O′点的连线与y轴的夹角为θ,其圆心Q的坐标为(-Rsinθ,Rcosθ),圆周运动轨迹方程为

         x=0          x=-Rsinθ

         y=0      或     y=R(1+cosθ)

(3)这束带电微粒与x轴相交的区域是x>0

带电微粒在磁场中经过一段半径为r′的圆弧运动后,将在y同的右方(x>0)的区域离开磁场并做匀速直线运动,如图c所示。靠近M点发射出来的带电微粒在突出磁场后会射向x同正方向的无穷远处国靠近N点发射出来的带电微粒会在靠近原点之处穿出磁场。

所以,这束带电微粒与x同相交的区域范围是x>0.

试题详情

22.(09年福建卷)(20分)图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3T,在X轴上距坐标原点L=0.50m的P处为离子的入射口,在Y上安放接收器,现将一带正电荷的粒子以v=3.5×104m/s的速率从P处射入磁场,若粒子在y轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不记其重力。

(1)求上述粒子的比荷

(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;

(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。

答案(1)=4.9×C/kg(或5.0×C/kg);(2) ; (3)

解析:第(1)问本题考查带电粒子在磁场中的运动。第(2)问涉及到复合场(速度选择器模型)第(3)问是带电粒子在有界磁场(矩形区域)中的运动。

(1)设粒子在磁场中的运动半径为r。如图甲,依题意MP连线即为该粒子在磁场中作匀速圆周运动的直径,由几何关系得

       ①

由洛伦兹力提供粒子在磁场中作匀速圆周运动的向心力,可得

       ②

联立①②并代入数据得

=4.9×C/kg(或5.0×C/kg)  ③

(2)设所加电场的场强大小为E。如图乙,当粒子子经过Q点时,速度沿y轴正方向,依题意,在此时加入沿x轴正方向的匀强电场,电场力与此时洛伦兹力平衡,则有

       ④

代入数据得

     ⑤

所加电场的长枪方向沿x轴正方向。由几何关系可知,圆弧PQ所对应的圆心角为45°,设带点粒子做匀速圆周运动的周期为T,所求时间为t,则有

     ⑥

       ⑦

联立①⑥⑦并代入数据得

    ⑧

(3)如图丙,所求的最小矩形是,该区域面积

         ⑨

联立①⑨并代入数据得

  

矩形如图丙中(虚线)

试题详情

25.(09年山东卷)(18分)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。

已知t=0时刻进入两板间的带电粒子恰好在t0时,刻经极板边缘射入磁场。上述m、q、l、l0、B为已知量。(不考虑粒子间相互影响及返回板间的情况)

(1)求电压U的大小。

(2)求时进入两板间的带电粒子在磁场中做圆周运动的半径。

(3)何时把两板间的带电粒子在磁场中的运动时间最短?求此最短时间。

 

解析:(1)时刻进入两极板的带电粒子在电场中做匀变速曲线运动,时刻刚好从极板边缘射出,在y轴负方向偏移的距离为,则有

联立以上三式,解得两极板间偏转电压为④。

(2)时刻进入两极板的带电粒子,前时间在电场中偏转,后时间两极板没有电场,带电粒子做匀速直线运动。带电粒子沿x轴方向的分速度大小为

带电粒子离开电场时沿y轴负方向的分速度大小为

带电粒子离开电场时的速度大小为

设带电粒子离开电场进入磁场做匀速圆周运动的半径为R,则有

联立③⑤⑥⑦⑧式解得⑨。

(3)时刻进入两极板的带电粒子在磁场中运动时间最短。带电粒子离开磁场时沿y轴正方向的分速度为⑩,设带电粒子离开电场时速度方向与y轴正方向的夹角为,则,联立③⑤⑩式解得,带电粒子在磁场运动的轨迹图如图所示,圆弧所对的圆心角为,所求最短时间为,带电粒子在磁场中运动的周期为,联立以上两式解得

考点:带电粒子在匀强电场、匀强磁场中的运动。

试题详情

11.(09年天津卷)(18分)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴。一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L, 小球过M点时的速度方向与x轴的方向夹角为.不计空气阻力,重力加速度为g,求

(1)    电场强度E的大小和方向;

(2)    小球从A点抛出时初速度v0的大小;

(3)    A点到x轴的高度h.

答案:(1),方向竖直向上  (2)    (3)

解析:本题考查平抛运动和带电小球在复合场中的运动。

(1)小球在电场、磁场中恰能做匀速圆周运动,说明电场力和重力平衡(恒力不能充当圆周运动的向心力),有

                     ①

                    ②

重力的方向竖直向下,电场力方向只能向上,由于小球带正电,所以电场强度方向竖直向上。

(2)小球做匀速圆周运动,O′为圆心,MN为弦长,,如图所示。设半径为r,由几何关系知

                        ③

小球做匀速圆周运动的向心力由洛仑兹力白日提供,设小球做圆周运动的速率为v,有

                 ④

   由速度的合成与分解知

                        ⑤

由③④⑤式得

                       ⑥

(3)设小球到M点时的竖直分速度为vy,它与水平分速度的关系为

                       ⑦

由匀变速直线运动规律

                      ⑧

由⑥⑦⑧式得

                               ⑨

试题详情

25.(09年全国卷Ⅱ) (18分)如图,在宽度分别为的两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。一带正电荷的粒子以速率v从磁场区域上边界的P点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q点射出。已知PQ垂直于电场方向,粒子轨迹与电、磁场分界线的交点到PQ的距离为d。不计重力,求电场强度与磁感应强度大小之比及粒子在磁场与电场中运动时间之比。

答案:

解析:本题考查带电粒子在有界磁场中的运动。

粒子在磁场中做匀速圆周运动,如图所示.由于粒子在分界线处的速度与分界线垂直,圆心O应在分界线上,OP长度即为粒子运动的圆弧的半径R.由几何关系得

………①

设粒子的质量和所带正电荷分别为m和q,由洛仑兹力公式和牛顿第二定律得

……………②

为虚线与分界线的交点,,则粒子在磁场中的运动时间为……③

式中有………④粒子进入电场后做类平抛运动,其初速度为v,方向垂直于电场.设粒子的加速度大小为a,由牛顿第二定律得…………⑤

由运动学公式有……⑥          ………⑦

由①②⑤⑥⑦式得…………⑧

由①③④⑦式得

试题详情

25.(20分)

(1)小球1所受的重力与电场力始终平衡   m1g=q1E    ①

E=2.5 N/C     ②

(2)相碰后小球1做匀速圆周运动,由牛顿第二定律得:

q1v1B=                ③

半径为                    ④

周期为        =1 s         ⑤

∵两小球运动时间        t=0.75 s=T

∴小球1只能逆时针经个圆周时与小球2再次相碰     ⑥

第一次相碰后小球2作平抛运动        ⑦

L=R1=v1t           ⑧

两小球第一次碰撞前后动量守恒,以水平向右为正方向

m1v0=-m1v1+m2v2           ⑨

由⑦、⑧式得          v2=3.75 m/s

由④式得          17.66 m/s   

∴两小球质量之比             ⑩

(09年全国卷Ⅰ)26(21分)如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于x y平面向外。P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点。A是一块平行于x轴的挡板,与x轴的距离为,A的中点在y轴上,长度略小于。带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变。质量为m,电荷量为q(q>0)的粒子从P点瞄准N0点入射,最后又通过P点。不计重力。求粒子入射速度的所有可能值。

解析:设粒子的入射速度为v,第一次射出磁场的点为,与板碰撞后再次进入磁场的位置为.粒子在磁场中运动的轨道半径为R,有…⑴

粒子速率不变,每次进入磁场与射出磁场位置间距离保持不变有…⑵

粒子射出磁场与下一次进入磁场位置间的距离始终不变,与相等.由图可以看出……⑶

设粒子最终离开磁场时,与档板相碰n次(n=0、1、2、3…).若粒子能回到P点,由对称性,出射点的x坐标应为-a,即……⑷

由⑶⑷两式得……⑸

若粒子与挡板发生碰撞,有……⑹

联立⑶⑷⑹得n<3………⑺

联立⑴⑵⑸得

………⑻

代入⑻中得

…………⑼

…………⑾

…………⑿

试题详情

1、⑴由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径。

    设入射粒子的速度为v1,由洛伦兹力的表达式和牛顿第二定律得:

          

        解得:

⑵设O/是粒子在磁场中圆弧轨道的圆心,连接O/Q,设O/Q=R/

  由几何关系得: 

         

    由余弦定理得:

        解得:

    设入射粒子的速度为v,由

        解出:

06(四川卷).  2如图所示,在足够大的空间范围内,同时存在着竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,磁感应强度B=1.57T.小球1带正电,其电量与质量之比q1/m1=4 C/kg,所受重力与电场力的大小相等;小球2不带电,静止放置于固定的水平悬空支架上。小球向右以v0=23.59 m/s的水平速度与小球2正碰,碰后经过0.75 s再次相碰。设碰撞前后两小球带电情况不发生改变,且始终保持在同一竖直平面内。

(取g=10 m/s2)

问(1)电场强度E的大小是多少?

(2)两小球的质量之比是多少?

试题详情


同步练习册答案