0  429316  429324  429330  429334  429340  429342  429346  429352  429354  429360  429366  429370  429372  429376  429382  429384  429390  429394  429396  429400  429402  429406  429408  429410  429411  429412  429414  429415  429416  429418  429420  429424  429426  429430  429432  429436  429442  429444  429450  429454  429456  429460  429466  429472  429474  429480  429484  429486  429492  429496  429502  429510  447090 

1.在现代无机化工、有机化工、生物化工等生产中,大多数产品的合成往往需要使用的主要化学反应条件是(  )。

(A)高温   (B)高压   (C)催化剂   (D)高温、高压、催化剂

试题详情

2.能力和方法目标

(1)通过合成氨生产条件的分析和选择,使学生了解应化学原理选择化工生产条件的思路和方法。

(2)通过用化学反应速率理论、化学平衡理论选择合成氨反应条件,培养知识的综合应用和归纳能力。

(3)通过合成氨对工业、农业等领域的重要作用的教育,让学生理解化学对于改善人类生活的重要意义。

[教学过程]

课堂练习:

试题详情

1.知识目标

(1)使学生理解如何应用化学反应速率和化学平衡原理,选择合成氨的适宜条件。

(2)了解合成氨生产的一般流程和反应原理、反应条件等。

试题详情

4.人造卫星(只讨论绕地球做匀速圆周运动的人造卫星)

   和星球表面上的物体不同,人造卫星所受的万有引力只有一个作用效果,就是使它绕星球做匀速圆周运动,因此万有引力等于向心力。又由于我们定义重力是由于地球的吸引而使物体受到的力,因此可以认为对卫星而言,

⑴人造卫星的线速度和周期。人造卫星的向心力是由地球对它的万有引力提供的,因此有:,由此可得到两个重要的结论:。可以看出,人造卫星的轨道半径r、线速度大小v和周期T是一一对应的,其中一个量确定后,另外两个量也就唯一确定了离地面越高的人造卫星,线速度越小而周期越大

⑵近地卫星。近地卫星的轨道半径r可以近似地认为等于地球半径R,又因为地面附近,所以有。它们分别是绕地球做匀速圆周运动的人造卫星的最大线速度和最小周期

⑶同步卫星。“同步”的含义就是和地球保持相对静止(又叫静止轨道卫星),所以其周期等于地球自转周期,既T=24h,根据⑴可知其轨道半径是唯一确定的,经过计算可求得同步卫星离地面的高度为h=3.6×107m≈5.6R(三万六千千米),而且该轨道必须在地球赤道的正上方,卫星的运转方向必须是由西向东。

例12.“神舟三号”顺利发射升空后,在离地面340km的圆轨道上运行了108圈。运行中需要多次进行 “轨道维持”。所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小方向,使飞船能保持在预定轨道上稳定运行。如果不进行轨道维持,由于飞船受轨道上稀薄空气的摩擦阻力,轨道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能变化情况将会是              

   A.动能、重力势能和机械能都逐渐减小

 B.重力势能逐渐减小,动能逐渐增大,机械能不变

 C.重力势能逐渐增大,动能逐渐减小,机械能不变

 D.重力势能逐渐减小,动能逐渐增大,机械能逐渐减小

解:由于阻力很小,轨道高度的变化很慢,卫星运行的每一圈仍可认为是匀速圆周运动。由于摩擦阻力做负功,根据机械能定理,卫星的机械能减小;由于重力做正功,根据势能定理,卫星的重力势能减小;由可知,卫星动能将增大。这也说明该过程中重力做的功大于克服阻力做的功,外力做的总功为正。答案选D

例13.  如图所示,发射同步卫星的一种程序是:先让卫星进入一个近地的圆轨道,然后在P点点火加速,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P,远地点为同步圆轨道上的Q),到达远地点时再次自动点火加速,进入同步轨道。设卫星在近地圆轨道上运行的速率为v1,在P点短时间加速后的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在Q点短时间加速后进入同步轨道后的速率为v4。试比较v1v2v3v4的大小,并用小于号将它们排列起来______。

解:根据题意在PQ两点点火加速过程中,卫星速度将增大,所以有v1<v2v3<v4,而v1v4是绕地球做匀速圆周运动的人造卫星的线速度,它们对应的轨道半径r1<r4,所以v4<v1。把以上不等式连接起来,可得到结论:v3<v4<v1<v2。(卫星沿椭圆轨道由PQ运行时,由于只有重力做负功,卫星机械能守恒,其重力势能逐渐增大,动能逐渐减小,因此有v3<v2。)           

例14.  欧洲航天局用阿里亚娜火箭发射地球同步卫星。该卫星发射前在赤道附近(北纬5°左右)南美洲的法属圭亚那的库卢基地某个发射场上等待发射时为1状态,发射到近地轨道上做匀速圆周运动时为2状态,最后通过转移、调试,定点在地球同步轨道上时为3状态。将下列物理量按从小到大的顺序用不等号排列:①这三个状态下卫星的线速度大小______;②向心加速度大小______;③周期大小______。

解:①比较2、3状态,都是绕地球做匀速圆周运动,因为r2<r3,所以v3<v2;比较1、3状态,周期相同,即角速度相同,而r1<r3v= rω,显然有v1<v3;因此v1<v3<v2。②比较2、3状态,都是绕地球做匀速圆周运动,因为r2<r3,而向心加速度就是卫星所在位置处的重力加速度g=GM/r2∝1/r2,所以a3<a2;比较1、3状态,角速度相同,而r1<r3,由a=rω2r,有a1<a3;所以a1<a3<a2。③比较1、2状态,可以认为它们轨道的周长相同,而v1< v2,所以T2<T1;又由于3状态卫星在同步轨道,周期也是24h,所以T3=T1,因此有T2<T1=T3。 

试题详情

3.万有引力和重力的关系

一般的星球都在不停地自转,星球表面的物体随星球自转需要向心力,因此星球表面上的物体所受的万有引力有两个作用效果:一个是重力,一个是向心力。如图所示,星球表面的物体所受的万有引力的一个分力是重力,另一个分力是使该物体随星球自转所需的向心力。即

地球表面的物体所受到的向心力f的大小不超过重力的0.35%,因此在计算中可以认为万有引力和重力大小相等。如果有些星球的自转角速度非常大,那么万有引力的向心力分力就会很大,重力就相应减小,就不能再认为重力等于万有引力了。如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了(2003年高考有关中子星问题就是这种情况)。

例11.  某行星自转周期是6小时。在该行星赤道上称得某物体的重力是同一物体在两极称得的重力的90%,求该行星的平均密度。

解:由已知,该星球赤道上物体所受的向心力是万有引力的10%,,而星球质量,由以上两式可得ρ=3.03×103kg/m3

试题详情

2.双星

   宇宙中往往会有相距较近,质量可以相比的两颗星球,它们离其它星球都较远,因此其它星球对它们的万有引力可以忽略不计。在这种情况下,它们将各自围绕它们连线上的某一固定点做同周期的匀速圆周运动。这种结构叫做双星

⑴由于双星和该固定点总保持三点共线,所以在相同时间内转过的角度必相等,即双星做匀速圆周运动的角速度必相等,因此周期也必然相同

⑵由于每颗星的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等,由F=mrω2可得,可得,即固定点离质量大的星较近。

⑶列式时须注意:万有引力定律表达式中的r表示双星间的距离,按题意应该是L,而向心力表达式中的r表示它们各自做圆周运动的半径,在本题中为r1r2,千万不可混淆。

当我们只研究地球和太阳系统或地球和月亮系统时(其他星体对它们的万有引力相比而言都可以忽略不计),其实也是一个双星系统,只是中心星球的质量远大于环绕星球的质量,因此固定点几乎就在中心星球的球心。可以认为它是固定不动的。

试题详情

   基本问题是研究星体(包括人造星体)在万有引力作用下做匀速圆周运动。

1.用万有引力定律求中心星球的质量和密度

   当一个星球绕另一个星球做匀速圆周运动时,设中心星球质量为M,半径为R,环绕星球质量为m,线速度为v,公转周期为T,两星球相距r,由万有引力定律有:

,可得出,由rvrT就可以求出中心星球的质量;如果环绕星球离中心星球表面很近,即满足rR,那么由可以求出中心星球的平均密度ρ

试题详情

4.竖直面内圆周运动最高点处的受力特点及分类

   这类问题的特点是:由于机械能守恒,物体做圆周运动的速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。

弹力只可能向下,如绳拉球。这种情况下有

,否则不能通过最高点。

弹力只可能向上,如车过桥。在这种情况下有:,否则车将离开桥面,做平抛运动。

弹力既可能向上又可能向下,如管内转(或杆连球、环穿珠)。这种情况下,速度大小v可以取任意值。但可以进一步讨论:①时物体受到的弹力必然是向下的;当时物体受到的弹力必然是向上的;当时物体受到的弹力恰好为零。②当弹力大小F<mg时,向心力有两解:mg±F;当弹力大小F>mg时,向心力只有一解:F +mg;当弹力F=mg时,向心力等于零

例10. 如图所示,杆长为L,球的质量为m,杆连球在竖直平面内绕轴O自由转动,已知在最高点处,杆对球的弹力大小为F=1mg,求这时小球的瞬时速度大小。

解:小球所需向心力向下,本题中F=1mgmg,所以弹力的方向可能向上也可能向下。⑴若F向上,则  ⑵若F向下,则

 本题是杆连球绕轴自由转动,根据机械能守恒,还能求出小球在最低点的即时速度。

   需要注意的是:若题目中说明小球在杆的带动下在竖直面内做匀速圆周运动,则运动过程中小球的机械能不再守恒,这两类题务必分清。

试题详情

3.圆锥摆

   圆锥摆是运动轨迹在水平面内的一种典型的匀速圆周运动。其特点是由物体所受的重力与弹力的合力充当向心力向心力的方向水平。也可以说是其中弹力的水平分力提供向心力(弹力的竖直分力和重力互为平衡力)。

例9. 小球在半径为R的光滑半球内做水平面内的匀速圆周运动,试分析图中的θ(小球与半球球心连线跟竖直方向的夹角)与线速度v、周期T的关系。(小球的半径远小于R。)

解:小球做匀速圆周运动的圆心在和小球等高的水平面上(不在半球的球心),向心力F是重力G和支持力N的合力,所以重力和支持力的合力方向必然水平。如图所示有: ,由此可得:

,(式中h为小球轨道平面到球心的高度)。可见,θ越大(即轨迹所在平面越高),v越大,T越小。

   本题的分析方法和结论同样适用于圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。共同点是由重力和弹力的合力提供向心力,向心力方向水平。

试题详情

2.一般地说,当做圆周运动物体所受的合力不指向圆心时,可以将它沿半径方向和切线方向正交分解,其沿半径方向的分力为向心力,只改变速度的方向,不改变速度的大小;其沿切线方向的分力为切向力,只改变速度的大小,不改变速度的方向。分别与它们相应的向心加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢

做圆周运动物体所受的向心力和向心加速度的关系同样遵从牛顿第二定律:Fn=man在列方程时,根据物体的受力分析,在方程左边写出外界给物体提供的合外力,右边写出物体需要的向心力(可选用等各种形式)。

如果沿半径方向的合外力大于做圆周运动所需的向心力,物体将做向心运动,半径将减小;如果沿半径方向的合外力小于做圆周运动所需的向心力,物体将做离心运动,半径将增大。

试题详情


同步练习册答案