4、函数:(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。(2)函数的集合定义:设A,B都是非空的数的集合,f:x→y是从A到B的映射,那么,从A到B的f:A→B,叫做A到B的函数,y=f(x),其中x∈A,y∈B,原像集合A叫做函数f(x)的定义域,像集合C叫做函数f(x)的值域。像集合CB
3、映射f:A→B的特征:(1)存在性:集合A中任一元素在集合B中都有像,(2)惟一性:集合A中的任一元素在集合B中的像只有一个,(3)方向性:从A到B的映射与从B到A的映射一般是不一样的(4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。
2、像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。
1、映射的定义:设A,B是两个集合,如果按照某种对应关系f,对集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,那么,这样的对应叫做集合A到集合B的映射,记作:f:A→B,
22.(本小题满分12分)
如图,四面体ABCD中,O、E分别是BD、BC的中点,
(1)求证:平面BCD;
(2)求异面直线AB与CD所成角的大小;
(3)求点E到平面ACD的距离。
高三第一轮复习训练题
21. 如图,平面PAD⊥平面ABCD,ABCD为正方形,
△PAD是直角三角形,且PA=AD=2,E、F、G分别是
线段PA、PD、CD的中点.
(1)求证:EFG⊥平面PAB;
(2)求异面直线EG与BD所成的角;
|
20.如图,△ABC和△DBC所在平面互相垂直,且AB=BC=BD,∠ABC=∠DBC=120º,求:⑴A、D连线和平面DBC所成的角;⑵二面角A-BD-C的正切值。
18.在三棱锥M-ABC中,CM⊥平面ABC,MA=MB,NA=NB=NC.
(1)求证:AM⊥BC;
(1)若∠AMB=60°,求直线AM与CN所成的角.
17. 如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1。
(1)试求的值;
(2)求二面角F-AC1-C的大小;
(3)求点C1到平面AFC的距离.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com