2.波的折射: 波从一种介质射入另一种介质时,传播方向发生改变的现象.
(1)波的折射中,波的频率不变,波速和波长都发生了改变.
(2)折射角:折射波的波线与界面法线的夹角.
(3)入射角i与折射角r的关系
V1和v2是波在介质I和介质Ⅱ中的波速.i为I介质中的入射角,r为Ⅱ介质中的折射角.
1.波的反射:波遇到障碍物会返回来继续传播的现象.
(1)波面:沿波传播方向的波峰(或波谷)在同一时刻构成的面.
(2)波线:跟波面垂直的线,表示波的传播方向.
(3)入射波与反射波的方向关系.
①入射角:入射波的波线与平面法线的夹角.
② 反射角:反射波的波线与平面法线的夹角.
③在波的反射中,反射角等于入射角;反射波的波长、频率和波速都跟入射波的相同.
(4)特例:夏日轰鸣不绝的雷声;在空房子里说话会听到声音更响.
(5)人耳能区分相差0.1 s以上的两个声音.
5.介质中质点的振动方向未定
在波的传播过程中,质点振动方向与传播方向联系,若某一质点振动方向未确定,则波的传播方向有两种,这样形成多解.
说明:波的对称性:波源的振动要带动它左、右相邻介质点的振动,波要向左、右两方向传播.对称性是指波在介质中左、右同时传播时,关于波源对称的左、右两质点振动情况完全相同.
[例3]一列在x轴上传播的简谐波,在xl= 10cm和x2=110cm处的两个质点的振动图象如图所示,则质点振动的周期为 s,这列简谐波的波长为 cm.
[解析]由两质点振动图象直接读出质点振动周期为 4s.由于没有说明波的传播方向,本题就有两种可能性:(1)波沿x轴的正方向传播.在t=0时,x1在正最大位移处,x2在平衡位置并向y轴的正方向运动,那么这两个质点间的相对位置就有如图所示的可能性,也就x2一 x1=(n十1/4)λ,λ=400/(1十4n)cm
(2)波沿x轴负方向传播.在t=0时.x1在正最大位移处,x2在平衡位置并向y轴的正方向运动,那么这两个质点间的相对位置就有如图所示的可能性……,x2一 x1=(n十3/4)λ,λ=400/(3+ 4n)cm
点评:由于波在媒质中传播具有周期性的特点,其波形图每经过一个周期将重复出现以前的波形图,所以由媒质中的质点的振动图象确定波长的值就不是唯一的(若要是唯一的,就得有两个前提:一个是确定波传播方向;一个是确定波长的范围).
[例4]如图实线是某时刻的波形图象,虚线是经过0.2s时的波形图象。求:
①波传播的可能距离 ②可能的周期(频率)
③可能的波速 ④若波速是35m/s,求波的传播方向
⑤若0.2s小于一个周期时,传播的距离、周期(频率)、波速。
解析:
①题中没给出波的传播方向,所以有两种可能:向左传播或向右传播。
向左传播时,传播的距离为x=nλ+3λ/4=(4n+3)m (n=0、1、2 …)
向右传播时,传播的距离为x=nλ+λ/4=(4n+1)m (n=0、1、2 …)
②向左传播时,传播的时间为t=nT+3T/4得:T=4t/(4n+3)=0.8 /(4n+3)(n=0、1、2 …)
向右传播时,传播的时间为t=nT+T/4得:T=4t/(4n+1)=0.8 /(4n+1) (n=0、1、2 …)
③计算波速,有两种方法。v=x/t 或v=λ/T
向左传播时,v=x/t=(4n+3)/0.2=(20n+15)m/s. 或v=λ/T=4 (4n+3)/0.8=(20n+15)m/s.(n=0、1、2 …)
向右传播时,v=x/t=(4n+1)/0.2=(20n+5)m/s. 或v=λ/T=4 (4n+1)/0.8=(20n+5)m/s. (n=0、1、2 …)
④若波速是35m/s,则波在0.2s内传播的距离为x=vt=35×0.2m=7m=1λ,所以波向左传播。
⑤若0.2s小于一个周期,说明波在0.2s内传播的距离小于一个波长。则:
向左传播时,传播的距离x=3λ/4=3m;传播的时间t=3T/4得:周期T=0.267s;波速v=15m/s.向右传播时,传播的距离为λ/4=1m;传播的时间t=T/4得:周期T=0.8s;波速v =5m/s.
点评:做此类问题的选择题时,可用答案代入检验法。
[例5]如图所示,一列简谐横波在t1时刻的波形,如图甲所示,质点P在该时刻的振动速度为v,t2时刻质点P的振动速度与t1时刻的速度大小相等,方向相同;t3时刻质点P的速度与t1时刻的速度大小相等,方向相反.若t2-t1=t3-t2=0.2秒,求这列波的传播速度.
解析:从振动模型分析,若质点P从t1时刻开始向平衡位置方向振动,在一个周期内,从t1时刻到t2时刻,从t2时刻到t3时刻,对应的振动图象如图乙所示.考虑到振动的周期性,则有: t2-t1=(n+1/4)T n=0,1,2……
周期为:T=(t2一t1)/(n十1/4) n=0,1,2……
由公式:v=λ/T 得出速度v的通解为: v=20(n+l/4) n=0,1,2……方向向左.
若质点 P从 t1时刻开始背离平衡位置方向振动,在一个周期内,从t1时刻到t2时刻,从t2时刻到t3时刻,对应的振动图象如图丙所示.考虑到振动的周期性,则有:
t2-t1=(n+3/4)T n=0,1,2……
周期为:T=(t2一t1)/(n十3/4) n=0,1,2……
由公式:v=λ/T 得出速度v的通解为: v=20(n+3/4) n=0,1,2……方向向右.
答案:v=20(n+l/4)(n=0,1,2……) 方向向左.
或v= 20( n+ 3/4)( n= 0,1,2,……)方向向右
[例6]已知在t1时刻简谐横波的波形如图中实线所示;在时刻t2该波的波形如图中虚线所示。t2-t1 = 0.02s来求:⑴该波可能的传播速度。⑵若已知T< t2-t1<2T,且图中P质点在t1时刻的瞬时速度方向向上,求可能的波速。⑶若0.01s<T<0.02s,且从t1时刻起,图中Q质点比R质点先回到平衡位置,求可能的波速。
解:⑴如果这列简谐横波是向右传播的,在t2-t1内波形向右匀速传播了,所以波速=100(3n+1)m/s (n=0,1,2,…);同理可得若该波是向左传播的,可能的波速v=100(3n+2)m/s (n=0,1,2,…)
⑵P质点速度向上,说明波向左传播,T< t2-t1 <2T,说明这段时间内波只可能是向左传播了5/3个波长,所以速度是唯一的:v=500m/s
⑶“Q比R先回到平衡位置”,说明波只能是向右传播的,而0.01s<T<0.02s,也就是T<0.02s<2T,所以这段时间内波只可能向右传播了4/3个波长,解也是唯一的:v=400m/s
[例7]一列横波沿直线在空间传播,某一时刻直线上相距为d的M、N两点均处在平衡位置,且M、N之间仅有一个波峰,若经过时间t,N质点恰好到达波峰位置,则该列波可能的波速是多少?
分析与解:本题没有给定波的传播方向,仅告诉我们在某一时刻M、N两点均处在平衡位置,且M、N之间仅有一个波峰.由此我们可以推想,处在直线MN上的各个质点在该时刻相对平衡位置的位移可能会有以下四种情况,即波的图像有以下四种图形(如图中A、B、C、D图,各图中均为左端为M,右端为N):
若波的传播方向由M到N,那么:
在A图中,经过时间t,N恰好到达波峰,说明时间t内波向右前进的距离,且,所以波速.
在B图中,经过时间t,波峰传到N点,则波在时间t内向右前进的距离,且,所以波速.
在C图中,经过时间t,波向右前进的距离,且,所以波速.
在D图中,经过时间t,波向右前进的距离,且,所以波速.
若波的传播方向从N到M,那么:
在A图中,质点N此时要向下振动,经过时间t,N到达波峰,则时间,在时间t内波向左前进的距离,所以波速.
在B图中,经过时间t, N到达波峰,则时间,在此时间内波向左前进的距离,所以波速.
在C图中,波在时间t内向左前进的距离,且,所以波速.
在D图中,质点N经过变为波峰,所以,在时间t内波向左前进的距离,所以波速.
所以该列波可能的波速有五种、、、、.
其实上述解决问题的方法过于程序化,如果能够判断出八种情况下该时刻波形图上的波峰在传播方向上到N点的距离S,波速v就等于.例如:最后一种情况中,波峰在传播方向上到N点的距离,所以波速.其它情况读者可自行解决.
规律方法
试题展示
波的现象与声波
知识简析 一、波的现象
4.介质中两质点间的距离与波长关系未定
在波的传播方向上,如果两个质点间的距离不确定,就会形成多解,解题时若不能联想到所有可能情况,易出现漏解.
3.波的双向性
双向性是指波沿正负方向传播时,若正、负两方向的传播时间之和等于周期的整数倍,则沿正负两方向传播的某一时刻波形相同.
2.波的时间的周期性
在x轴上同一个给定的质点,在t+nT时刻的振动情况与它在t时刻的振动情况(位移、速度、加速度等)相同.因此,在t时刻的波形,在t+nT时刻会多次重复出现.这就是机械波的时间的周期性.
波的时间的周期性,表明波在传播过程中,经过整数倍周期时,其波的图象相同.
波动图象的多解涉及:(1)波的空间的周期性;(2)波的时间的周期性;(3)波的双向性;(4)介质中两质点间距离与波长关系未定;(5)介质中质点的振动方向未定.
1.波的空间的周期性
沿波的传播方向,在x轴上任取一点P(x),如图所示,P点的振动完全重复波源O的振动,只是时间上比O点要落后Δt,且Δt =x/v=xT0/λ.在同一波线上,凡坐标与P点坐标x之差为波长整数倍的许多质点,在同一时刻t的位移都与坐标为λ的质点的振动位移相同,其振动速度、加速度也与之相同,或者说它们的振动“相貌”完全相同.因此,在同一波线上,某一振动“相貌”势必会不断重复出现,这就是机械波的空间的周期性.
空间周期性说明,相距为波长整数倍的多个质点振动情况完全相同.
4.已知振幅A和周期T,求振动质点在Δt时间内的路程和位移.
求振动质点在Δt时间内的路程和位移,由于牵涉质点的初始状态,需用正弦函数较复杂.但Δt若为半周期T/2的整数倍则很容易.
在半周期内质点的路程为 2A.若Δt= n·T/2, n= 1、2、3……,则路程s=2A·n,其中n=.
当质点的初始位移(相对平衡位置)为x1=x0时,经T/2的奇数倍时x2=-x0,经T/2的偶数倍时x2=x0.
[例11]如图所示,在xOy平面内有一沿x轴正方向传播的简谐振动横波,波速为1m/s,振幅为4cm,频率为2.5Hz,在t=0时刻,P点位于其平衡位置上方最大位移处,则距P点为0.2m的Q点
A、在0.1s时的位移是4cm;
B、在0.1s时的速度最大;
C、在0.1s时的速度向下;
D、在0到0.1s的时间内路程是4cm;
解析:,P与Q相距λ/2,先画出若干个波长的波形,经过0.1s也就是T/4后,Q点将回到平衡位置,且向上运动,B项正确;在0到0.1s时间内通过的路程为振幅,即4cm,D项正确
拓展:若求经Δt=2.5s时Q的路程和Q的位移,如何求?
试题展示
专题:振动图像与波的图像及多解问题
知识简析
3.已知波速V和波形,画出再经Δt时间波形图的方法.
(1)平移法:先算出经Δt时间波传播的距离上Δx=V·Δt,再把波形沿波的传播方向平移动Δx即可.因为波动图象的重复性,若知波长λ,则波形平移nλ时波形不变,当Δx=nλ十x时,可采取去整nλ留零x的方法,只需平移x即可
(2)特殊点法:(若知周期T则更简单)
在波形上找两特殊点,如过平衡位置的点和与它相邻的峰(谷)点,先确定这两点的振动方向,再看Δt=nT+t,由于经nT波形不变,所以也采取去整nT留零t的方法,分别做出两特殊点经 t后的位置,然后按正弦规律画出新波形.
[例7]图是某时刻一列横波在空间传播的波形图线。已知波是沿x轴正方向传播,波速为4m/s,试计算并画出经过此时之后1.25s的空间波形图。
解析:由波形图已知λ=0.08m,由T=λ/v=0.08/4=0.02s,经过t=1.25s,即相当于1.25/0.02=62.5个周期,而每经过一个周期,波就向前传播一个波长。经过62.5个周期,波向前传播了62.5个波长。据波的周期性,当经过振动周期的整数倍时,波只是向前传播了整数倍个波长,而原有波形不会发生改变,所以可以先画出经过1/2周期后的波形,如图。再将此图向前扩展62个波长即为题目要求,波形如图。
[例8]如图是一列向右传播的简谐横波在某时刻的波形图。已知波速v=0.5m/s,画出该时刻7s前及7s后的瞬时波形图。
解析:λ=2m,v=0.5m/s,=4 s.所以⑴波在7s内传播的距离为x=vt=3.5m=7λ/4,⑵质点振动时间为7T/4。
方法1 波形平移法:现有波形向右平移可得7s后的波形;
现有波形向左平移λ可得7s前的波形。
由上得到图中7s后的瞬时波形图(粗实线)和7s前的瞬时波形图(虚线)。
方法2 特殊质点振动法:根据波动方向和振动方向的关系,确定两个特殊点(如平衡点和峰点)在3T/4前和3T/4后的位置进而确定波形。请读者试着自行分析画出波形。
[例9]一列简谐横波向右传播,波速为v。沿波传播方向上有相距为L的P、Q两质点,如图15所示。某时刻P、Q两质点都处于平衡位置,且P、Q间仅有一个波峰,经过时间t,Q质点第一次运动到波谷。则t的可能值( )
A.1个 B.2个
C.3个 D.4个
解析:由题意:“某时刻P、Q两质点都处于平衡位置,且P、Q间仅有一个波峰”,符合这一条件的波形图有4个,如图所示。显然,Q质点第一次运动到波谷所需的时间t的可能值有4个。故D选项正确。
[例10]一列简谐横波在传播方向上相距为3米的两个质点P和Q的振动图象分别用图中的实线和虚线表示,若P点离振源较Q点近,则该波的波长值可能为多少?若Q点离振源较P点近,则该波的波长值又可能为多少?
分析:由图可知,T= 4s,P近,波由P向Q传,P先振动,Q后振动,Dt=Kt+3T/4,所以,SPQ=kl+3l/4,则 k=0,1,2L
若Q近,波由Q向P传,Q先振动,P后振动,Dt=Kt+T/4,所以,SPQ=kl+l/4,则 k=0,1,2L
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com