0  430486  430494  430500  430504  430510  430512  430516  430522  430524  430530  430536  430540  430542  430546  430552  430554  430560  430564  430566  430570  430572  430576  430578  430580  430581  430582  430584  430585  430586  430588  430590  430594  430596  430600  430602  430606  430612  430614  430620  430624  430626  430630  430636  430642  430644  430650  430654  430656  430662  430666  430672  430680  447090 

4.区间

    (1)区间的分类:开区间、闭区间、半开半闭区间;

    (2)无穷区间;

    (3)区间的数轴表示。

试题详情

3.两个函数的相等:

函数的定义含有三个要素,即定义域A、值域C和对应法则f。当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。

试题详情

2.构成函数的三要素:定义域、对应关系和值域

(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:

①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);

②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;

③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。

(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。

①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。

试题详情

1.函数的概念:

AB是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称fAB为从集合A到集合B的一个函数。记作:y=f(x),xA。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| xA }叫做函数的值域。

注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是fx

试题详情

2.热点是函数概念及函数的工具作用,以中等难度、题型新颖的试题综合考察函数成为新的热点。

试题详情

函数是整个高中数学的重点,其中函数思想是最重要的数学思想方法,函数问题在历年的高考中都占据相当大的比例。

从近几年来看,对本部分内容的考察形势稳中求变,向着更灵活的的方向发展,对于函数的概念及表示多以下面的形式出现:通过具体问题(几何问题、实际应用题)找出变量间的函数关系,再求出函数的定义域、值域,进而研究函数性质,寻求问题的结果。

高考对函数概念与表示考察是以选择或填空为主,以解答题形式出现的可能性相对较小,本节知识作为工具和其他知识结合起来命题的可能性依然很大。

预测2008年高考对本节的考察是:

1.题型是1个选择和一个填空;

试题详情

5.学会运用函数图象理解和研究函数的性质。

试题详情

4.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义;

试题详情

3.通过具体实例,了解简单的分段函数,并能简单应用;

试题详情

2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;

试题详情


同步练习册答案